The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CAN(742hit)

641-660hit(742hit)

  • ISI and CCI Canceller with Preselecting Adaptive Array and Cascaded Equalizer in Digital Mobile Radio

    Yoshiharu DOI  Takeo OHGANE  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:3
      Page(s):
    674-682

    An adaptive array has been proposed as a canceller for both inter-symbol interference (ISI) and co-channel interference (CCI). However, it has no path-diversity gain since it selects just one signal correlated to the reference signal. In this paper, a novel interference canceller having sufficient path-diversity gain is proposed. The canceller is characterized by the combined configuration of an adaptive array and an equalizer. In the proposed system, a pre-selecting adaptive array is installed first. By employing a specific training sequence and sampling timing at the receiver during the training period, the perfect correlation between the "desired signal" and "short delayed" is achieved. Therefore, the pre-selecting adaptive array can extract the desired and ISI signals simultaneously, and the cascaded adaptive equalizer can provide the path-diversity gain without degradation by interference. The proposed system achieves a simple configuration and robustness against both ISI and CCI with a sufficient path diversity gain. In computer simulations, average BER characteristics of the proposed system were evaluated in a quasi-static Rayleigh fading channel. The simulation results showed that the system can reduce both long-delayed ISI and CCI efficiently, and that the expected path diversity gain is obtained even with strong CCI. They also showed that the degradation is not so serious when the number of antenna elements is less than that of incoming signals.

  • A Novel Block Matching Algorithm for Motion Estimation

    Yankang WANG  Yanqun WANG  Hideo KURODA  

     
    PAPER-Source Encoding

      Vol:
    E81-B No:3
      Page(s):
    575-585

    Conventional fast block-matching algorithms, such as TSS and DSWA/IS, are widely used for motion estimation in the low-bit-rate video coding. These algorithms are based on the assumption that when searching in the previous frame for the block that best matches a block in the current frame, the difference between them increases monotonically when a matching block moves away from the optimal solution. Unfortunately, this assumption of global monotonicity is often not valid, which can lead to a high possibility for the matching block to be trapped to local minima. On the other hand, monotonicity does exist in localized areas. In this paper, we proposed a new algorithm called Peano-Hilbert scanning search algorithm (PHSSA). With the Peano-Hilbert image representation, the assumption of global monotonicity is not necessary, while local monotonicity can be effectively explored with binary search. PHSSA selects multiple winners at each search stage, minimizing the possibility of the result being trapped to local minima. The algorithm allows selection of three parameters to meet different search accuracy and process speed: (1) the number of initial candidate intervals, (2) a threshold to remove the unpromising candidate intervals at each stage, and (3) a threshold to control when interval subdivision stops. With proper parameters, the multiple-candidate PHSSA converges to the optimal result faster and with better accuracy than the conventional block matching algorithms.

  • Near-Decorrelating Multistage Detector for Asynchronous DS-CDMA

    Toshinori SUZUKI  Yoshio TAKEUCHI  

     
    PAPER-Communication Theory

      Vol:
    E81-B No:3
      Page(s):
    553-564

    In this paper, we propose an interference canceller for asynchronous DS-CDMA. The principle is based on parallel cancellation using soft decision(PCSD), however, we propose to add an operation to suppress the strength of interfering signals replica on PCSD. We show here that this operation plays a very important theoretical role in PCSD, and that the performance of our proposed scheme approaches that of a perfect decorrelating detector under certain conditions. With this theoretical background in mind, we named this scheme the "Near-Decorrelating Multistage Detector"(NDMD). To demonstrate NDMD performance, we performed two kinds of computer simulations. In the first kind of simulation, simple conditions are assumed in order to evaluate basic cancelling performance. In the other kind of simulation, essential techniques for CDMA cellular systems such as FEC, transmission power control(TPC), and base band filtering were implemented while taking into account NDMD as applied to such systems. These simulations numerically demonstrate that NDMD is very efficient in cancelling out interference and that it improves asynchronous DS-CDMA performance.

  • Lubricant Design for Contact Recording Systems

    Masahiro YANAGISAWA  Akinobu SATO  Ken AJIKI  

     
    PAPER

      Vol:
    E81-C No:3
      Page(s):
    343-348

    Contact recording systems have been studied for future magnetic recording disks with a high recording density. Tribological key technologies for ultra-low spacing and high wear performance are required for the contact systems. Particularly, a liquid lubrication system plays an important roll for reducing a mechanical spacing and improving wear performances. However, a lubrication design concept for contact recording systems is not established. In this study, molecular design of lubricants for contact systems will be discussed from a viewpoint of bouncing and wear behaviors. As a result, a minimum bouncing height of 3 nm and a high wear performance were obtained for ion-etched contact sliders by the optimization of design parameters, i. e. pad design and lubricant material.

  • An Adaptive Switching Echo Cancellation/Diversity Reception for an FM Broadcasting Receiver in Multipath Mobile Channel

    Fangwei TONG  Takuya OTANI  Yoshihiko AKAIWA  

     
    PAPER-Radio Communication

      Vol:
    E81-B No:3
      Page(s):
    637-646

    In the multipath mobile channel, the received signal suffers from both the fluctuation in the received field intensity caused by fading and waveform distortion caused by the echo. Diversity reception using multiple spaced antennas is an effective method to compensate for fading, while echo cancellation with an adaptive array is good at compensating for waveform distortion. In this paper, an adaptive switching echo cancellation/diversity reception method to compensate for both waveform distortion and fading is proposed. The proposed switching reception monitors the impacts of channel conditions on received signal and then one of an echo canceller and a diversity receiver is selected accordingly to compensate the channel. The compensation performance of the proposed switching reception in terms of both average DUR (Desired to Undesired signal Ratio) and the probability of DUR below a threshold value is investigated with computer simulation. The results show that the adaptive switching echo cancellation/diversity reception has realized the advantages of both adaptive echo cancellation and diversity reception.

  • Two Types of Adaptive Beamformer Using 2-D Joint Process Lattice Estimator

    Tateo YAMAOKA  Takayuki NAKACHI  Nozomu HAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:1
      Page(s):
    117-122

    This paper presents two types of two-dimensional (2-D) adaptive beamforming algorithm which have high rate of convergence. One is a linearly constrained minimum variance (LCMV) beamforming algorithm which minimizes the average output power of a beamformer, and the other is a generalized sidelobe canceler (GSC) algorithm which generalizes the notion of a linear constraint by using the multiple linear constraints. In both algorithms, we apply a 2-D lattice filter to an adaptive filtering since the 2-D lattice filter provides excellent properties compared to a transversal filter. In order to evaluate the validity of the algorithm, we perform computer simulations. The experimental results show that the algorithm can reject interference signals while maintaining the direction of desired signal, and can improve convergent performance.

  • Window and Extended Window Methods for Addition Chain and Addition-Subtraction Chain

    Noboru KUNIHIRO  Hirosuke YAMAMOTO  

     
    PAPER

      Vol:
    E81-A No:1
      Page(s):
    72-81

    The addition chain (A-chain) and addition-subtraction chain (AS-chain) are efficient tools to calculate power Me (or multiplication eM), where integere is fixed andM is variable. Since the optimization problem to find the shortest A (or AS)-chain is NP-hard, many algorithms to get a sub-optimal A (or AS)-chain in polynomial time are proposed. In this paper, a window method for the AS-chain and an extended window method for the A-chain and AS-chain are proposed and their performances are theoretically evaluated by applying the theory of the optimal variable-to-fixed length code, i. e. , Tunstall code, in data compression. It is shown by theory and simulation that the proposed algorithms are more efficient than other algorithms in practical cases in addition to the asymptotic case.

  • Advanced Multi-stage Interference Canceller Systems with Adaptive Radio Channel Estimation Using Pilot and Information Symbols

    Satoru SHIMIZU  Eiichiro KAWAKAMI  Kiyohito TOKUDA  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2464-2469

    This paper propeses advanced multi-stage interference canceller systems (MSICS) wihch can estimate radio channels with precision in the direct sequence code division multiple access (DS-CDMA) systems. For the accurate channel estimations, we propose a novel radio channel estimation method specified by the following two signal processing methods. One is the radio channel estimation using both pilot and information signals. The other is the correction of estimated radio channels using adaptation algorithm based on the least mean square method (LMS). The results of our computer simulation indicate that the cell capacity of the advanced MSICS in serial and parallel structure can be increased by about 1.8 and 1.3 times over that of a receiver which does not has a canceller, respectively. Moreover, the advanced MSICS in serial and parallel structure can reduce the required Eb/No by about 1.2 dB and 1.6 dB at a BER of 10-3 compared to the Eb/No of a basic MSICS, respectively.

  • A 10-bit 50 MS/s 300 mW A/D Converter Using Reference Feed-Forward Architecture

    Takashi OKUDA  Osamu MATSUMOTO  Toshio KUMAMOTO  Masao ITO  Hiroyuki MOMONO  Takahiro MIKI  Takeshi TOKUDA  

     
    PAPER

      Vol:
    E80-C No:12
      Page(s):
    1553-1559

    This paper describes the 10-bit 50 MS/s pipelined CMOS A/D Converter using a "reference feed-forward architecture." In this architecture, reference voltage generated in a reference generator block and residual voltage from a DA/subtractor block are fed to the next stage. The reference generator block and DA/subtractor block are constructed using resistive-load, low-gain differential amplifiers. The high-gain, high-speed amplifiers consuming much power are not used. Therefore, the power consumption of this ADC is reduced. The gain matching of the reference voltage with the internal signal range is achieved through the introduction of the reference generator block having the same characteristics as a DA/subtractor block. Each offset voltage of the differential amplifier in the reference generator block and the DA/subtractor block is canceled by the offset cancellation technique, individually. In addition, the front-end sample/hold circuit is eliminated to reduce power consumption. Because of the introduction of high-speed comparators based on the source follower and latch circuit into the first stage A/D subconverter, analog bandwidth is not degraded. This ADC has been fabricated in double-polysilicon, double-metal, 0.5µm CMOS technology, and it operates at 50 MS/s with a 300-mW (Vdd=3.0 V) power consumption. The differential linearity error of less than +/-1 LSB is obtained.

  • Performance of Pilot Symbol-Assisted Coherent Orthogonal Filter Based Rake Receiver Using Fast Transmit Power Control for DS-CDMA Mobile Radio

    Hidehiro ANDOH  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2455-2463

    The bit error rate (BER) performance against average Eb/No (signal energy per bit-to-noise power spectral density ratio) and the capacity of the pilot symbol-assisted coherent orthogonal filter (PSA-COF) based Rake receiver with fast transmit power control (TPC) are evaluated in DS-CDMA reverse link under multipath Rayleigh fading. Fast TPC, which controls all signals transmitted from users in the same cell or sector such that they are received with equal power at the cell site under fast Rayleigh fading, is essential for the PSA-COF based Rake receiver in the reverse link in order to improve the performance degradation experienced when the received signal level drops due to fading as the transmit power is limited in practical systems. Signal-to interference plus noise power ratio (SINR) based fast transmit power control (TPC) is assumed here. By using the fast TPC in reverse link and applying the PSA-COF based Rake receiver to base station (BS), the transmit power of each mobile station (MS) can be significantly reduced, thus increasing link capacity. It is demonstrated that the capacity of the PSA-COF based Rake receiver is about 1.5 times higher than that of the conventional matched filter (MF) receiver in interference-limited channels.

  • Design of a Novel Linear 3-Input CMOS OTA and Its Application to Filter Realization

    Moonjae JEONG  Shigetaka TAKAGI  Zdzislaw CZARNUL  Nobuo FUJII  

     
    PAPER-Analog Signal Processing

      Vol:
    E80-A No:12
      Page(s):
    2548-2554

    A novel voltage-tunable linear 3-input CMOS Operational Transconductance Amplifier (OTA) suitable for onchip integration of advanced monolithic systems is proposed. When a 3-input OTA is needed, a conventional 3-input OTA uses two 2-input OTA's and either grounds one of the 4 input terminals or ties two terminals. This paper presents a method to reduce the number of MOS transistors and to save chip area by designing a 3-input OTA directly. A CMOS pair technique is introduced s a solution to minimize a matching problem for control voltage sources. Simulation results show that the active chip area of the proposed 3-input OTA is reduced by 25% compared to that of a conventional one. The proposed 3-input OTA is applied to a realization of an OTA-C filter to verify the effectiveness.

  • AND/OR Reasoning Graphs for Determining Prime Implicants in Multi-Level Combinational Networks*

    Dominik STOFFEL  Wolfgang KUNZ  Stefan GERBER  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E80-A No:12
      Page(s):
    2581-2588

    This paper presents a technique to determine prime implicants in multi-level combinational networks. The method is based on a graph representation of Boolean functions called AND/OR reasoning graphs. This representation follows from a search strategy to solve the satisfiability problem that is radically different from conventional search for this purpose (such as exhaustive simulation, backtracking, BDDs). The paper shows how to build AND/OR reasoning graphs for arbitrary combinational circuits and proves basic theoretical properties of the graphs. It will be demonstrated that AND/OR reasoning graphs allow us to naturally extend basic notions of two-level switching circuit theory to multi-level circuits. In particular, the notions of prime implicants and permissible prime implicants are defined for multi-level circuits and it is proved that AND/OR reasoning graphs represent all these implicants. Experimental results are shown for PLA factorization.

  • Vehicular Spread Spectrum Radar for Multiple Targets Detection Using Multi-Beam Antenna

    Yukiko HANADA  Ryuji KOHNO  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2517-2525

    This paper proposes and investigates a vehicular radar system that can measure the distance to, the relative speed of and the direction of arrival (DOA) of the reflected waves from multiple targets or vehicles using the direct-sequence spread spectrum (DS-SS) technique. In particular, we propose a DOA estimation scheme using a multi-beam antenna. In order to show that the proposed system can accurately measure the above mentioned quantities, the performance is evaluated numerically in a multipath environment. Moreover, optimal multi-beam pattern is derived to minimize error probability of DOA estimation.

  • Performance Analysis of Direct-Detection Optical Synchronous CDMA Systems with Co-channel Interference Canceller

    Tomoaki OHTSUKI  Masanori TAKEOKA  Eiji IWAHASHI  

     
    LETTER-Coding Theory/Communication

      Vol:
    E80-A No:11
      Page(s):
    2260-2263

    We analyze performance of direct-detection optical synchronous code-division multiple-access (CDMA) system with co-channel interference canceller using Gaussian approximation of avalanche photodiode (APD) output. Our results show that the derived probability of error floor is equal to that under the number-state light field model.

  • A Sparse-Matrix/Canonical Grid Method for Analyzing Microstrip Structures

    Chi H.CHAN  Chien Min LIN  Leung TSANG  Yiu Fung LEUNG  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1354-1359

    In this paper, we illustrate the analysis of microstrip structures with a large number of unknowns using the sparse-matrix/canonical grid method. This fast Fourier thansform (FFT) based iterative method reduces both CPU time and computer storage memory requirements. We employ the Mixed-Potential Integral Equation (MPIE) formulation in conjunction with the RWG triangular discretization. The required spatial-domain Green's functions are obtained efficiently and accurately using the Complex Image Method (CIM). The impedance matrix is decomposed into a sparse matrix which corresponds to near interactions and its complementary matrix which corresponds to far interactions among the subsectional current elements on the microstrip structures. During the iterative process, the near-interaction portion of the matrix -vector multiplication is computed directly as the conventional MPIE formulation. The far-interaction portion of the matrix-vector multiplication is computed indirectly using fast Fourier transforms (FFTs). This is achieved by a Taylor series expansion of the Green's function about the grid points of a uniformly-spaced canonical grid overlaying the triangular discretization.

  • Irreducible Components of Canonical Graphs for Second Order Spectral Nulls

    Hiroshi KAMABE  

     
    PAPER-Coding Theory

      Vol:
    E80-A No:11
      Page(s):
    2073-2088

    Irreducible components of canonical graphs for second order spectral null constraints at a rational submultiple of the symbol frequency fsk/n are studied where fs is the symbol frequency. We show that if n is prime then a canonical graph consists of disjoint irreducible components. We also show that the number of irreducible components of a canonical graphs is finite if n is prime. For the case n = 2 and p O mod n, all aperiodic irreducible components are identified explicitly where p is a parameter of a canonical graph.

  • Embedded Memory Array Testing Using a Scannable Configuration

    Seiken YANO  Nagisa ISHIURA  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1934-1944

    We have previously proposed a scannable memory configuration which is useful in testing logic blocks around memory arrays. Although the configuration is supposed to be effective in testing the memory array itself by its frequent read/write access during the scan operation, it has not been theoretically shown what types of faults can be detected. In this paper, from a viewpoint of memory testing, we investigate the testability of the scannable memory configuration and propose a memory array test using the scan path. It is shown that we can detect (1) all stuck-at faults in memory cells, (2) all stuck-at faults in address decoders, (3) all stuck-at faults in read/write logic, (4) static, dynamic and 2-coupling faults between memory cells of adjacent words, and (5) static coupling faults between memory cells in the same word. The test can be accomplished simply by comparing scan-in data and scan-out data. The test vector is 20ms bit long, where m is the number of words of the memory array under test and s is the total scan path length.

  • Feedback Type Echo Distortion Canceller in an FM Broadcasting Receiver

    Fangwei TONG  Yoshihiko AKAIWA  

     
    PAPER-Mobile Communication

      Vol:
    E80-B No:9
      Page(s):
    1345-1351

    This work is targeted to understand the operating principle of the feedback type echo canceller for use in an FM broadcasting receiver and to study its compensating features and the effects of the practical operating environment on its performance. The effects of the tap interval and the compensation performance in the presence of an echo with excess delay 0 - 15 µs are examined. The results show that the tap interval should be selected according to the observable bandwidth of the channel transfer function and the performance of a feedback type echo canceller has a wavelike curve with respect to the excess delay of the echo. To improve the performance of the feedback type echo canceller, an adaptive echo canceller operating with CM algorithm is proposed and examined with computer simulation. The results show that the compensation performance is improved.

  • Cancellation Technique Used for DS-CDMA Signal in Nonlinear Optical Link

    Wei HUANG  Essam A. SOUROUR  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E80-A No:9
      Page(s):
    1616-1624

    Microcellular radio direct-sequence code division multiple access (DC-CDMA) system using optical link to connect their base stations to a central station is a solution of cost-effective and efficient spectrum reuse to meet the growing demand for mobile communications. In addition to the inherent multiuser interference (MUI) of CDMA signals, the system capacity is significantly reduced by a nonlinear distortion (NLD) due to the nonlinearity of optical link. In this paper, a two-stage cancellation technique is introduced into the system to cancel both the MUI and the NLD. It is performed at the receiver of the central station where the random ingredients of all user signals are estimated, and the MUI and the NLD are rebuilt and removed from the received signal. The validity of the cancellation technique is theoretically analyzed and shown by the numerical results. The analytical method and its results are also applicable to other general nonlinear CDMA.

  • Interference Cancellation Characteristics of a BSCMA Adaptive Array Antenna with a DBF Configuration

    Toyohisa TANAKA  Ryu MIURA  Isamu CHIBA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:9
      Page(s):
    1363-1371

    We have developed a Beam Space CMA (Constant Modulus Algorithm) Adaptive Array Antenna system (BSCMA adaptive array antenna) that may be suitable for mobile communications. In this paper, we present experimental results of interference cancellation characteristics using the developed system. The experiment was carried out in a large radio anechoic chamber, while desired and interference signals were transmitted to the system. We focused on the characteristics of capture, convergence and tracking in adaptive processing. The experimental results show excellent interference cancellation characteristics, and demonstrate that the BSCMA adaptive array antenna has a greater feasibility to be applied practically in mobile communications.

641-660hit(742hit)