The search functionality is under construction.

Keyword Search Result

[Keyword] CI(5648hit)

21-40hit(5648hit)

  • Coupling Analysis of Fiber-Type Polarization Splitter Open Access

    Taiki ARAKAWA  Kazuhiro YAMAGUCHI  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2023/10/27
      Vol:
    E107-C No:4
      Page(s):
    98-106

    We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.

  • Design and Fabrication of a Metasurface for Bandwidth Enhancement of RCS Reduction Based on Scattering Cancellation Open Access

    Hiroshi SUENOBU  Shin-ichi YAMAMOTO  Michio TAKIKAWA  Naofumi YONEDA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-C No:4
      Page(s):
    91-97

    A method for bandwidth enhancement of radar cross section (RCS) reduction by metasurfaces was studied. Scattering cancellation is one of common methods for reducing RCS of target scatterers. It occurs when the wave scattered by the target scatterer and the wave scattered by the canceling scatterer are the same amplitude and opposite phase. Since bandwidth of scattering cancellation is usually narrow, we proposed the bandwidth enhancement method using metasurfaces, which can control the frequency dependence of the scattering phase. We designed and fabricated a metasurface composed of a patch array on a grounded dielectric substrate. Numerical and experimental evaluations confirmed that the metasurface enhances the bandwidth of 10dB RCS reduction by 52% bandwidth ratio of the metasurface from 34% bandwidth ratio of metallic cancelling scatterers.

  • Capacity and Reliability of Ionosphere Communication Channel Based on Multi-Carrier Modulation Technique and LUF-MUF Variation Open Access

    Varuliantor DEAR  Annis SIRADJ MARDIANI  Nandang DEDI  Prayitno ABADI  Baud HARYO PRANANTO   ISKANDAR  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:4
      Page(s):
    357-367

    Low capacity and reliability are the challenges in the development of ionosphere communication channel systems. To overcome this problem, one promising and state-of-the-art method is applying a multi-carrier modulation technique. Currently, the use of multi-carrier modulation technique is using a single transmission frequency with a bandwidth is no more than 24 kHz in real-world implementation. However, based on the range of the minimum and maximum ionospheric plasma frequency values, which could be in the MHz range, the use of these values as the main bandwidth in multi-carrier modulation techniques can optimize the use of available channel capacity. In this paper, we propose a multi-carrier modulation technique in combination with a model variation of Lowest Usable Frequency (LUF) and Maximum Usable Frequency (MUF) values as the main bandwidth to optimize the use of available channel capacity while also maintaining its reliability by following the variation of the ionosphere plasma frequency. To analyze its capacity and reliability, we performed a numeric simulation using a LUF-MUF model based on Long Short Term-Memory (LSTM) and Advanced Stand Alone Prediction System (ASAPS) in Near Vertical Incidence Skywave (NVIS) propagation mode with the assumption of perfect synchronization between transmitter and receiver with no Doppler and no time offsets. The results show the achievement of the ergodic channel capacity varies for every hour of the day, with values in the range of 10 Mbps and 100 Mbps with 0 to 20 dB SNR. Meanwhile, the reliability of the system is in the range of 8% to 100% for every hour of one day based on two different Mode Reliability calculation scenarios. The results also show that channel capacity and system reliability optimization are determined by the accuracy of the LUF-MUF model.

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • A Complete Library of Cross-Bar Gate Logic with Three Control Inputs

    Ryosuke MATSUO  Shin-ichi MINATO  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:3
      Page(s):
    566-574

    Logic circuits based on a photonic integrated circuit (PIC) have attracted significant interest due to their ultra-high-speed operation. However, they have a fundamental disadvantage that a large amount of the optical signal power is discarded in the path from the optical source to the optical output, which results in significant power consumption. This optical signal power loss is called a garbage output. To address this issue, this paper considers a circuit design without garbage outputs. Although a method for synthesizing an optical logic circuit without garbage outputs is proposed, this synthesis method can not obtain the optimal solution, such as a circuit with the minimum number of gates. This paper proposes a cross-bar gate logic (CBGL) as a new logic structure for optical logic circuits without garbage outputs, moreover enumerates the CBGLs with the minimum number of gates for all three input logic functions by an exhaustive search. Since the search space is vast, our enumeration algorithm incorporates a technique to prune it efficiently. Experimental results for all three-input logic functions demonstrate that the maximum number of gates required to implement the target function is five. In the best case, the number of gates in enumerated CBGLs is one-half compared to the existing method for optical logic circuits without garbage outputs.

  • Performance Comparison of the Two Reconstruction Methods for Stabilizer-Based Quantum Secret Sharing

    Shogo CHIWAKI  Ryutaroh MATSUMOTO  

     
    LETTER-Quantum Information Theory

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    526-529

    Stabilizer-based quantum secret sharing has two methods to reconstruct a quantum secret: The erasure correcting procedure and the unitary procedure. It is known that the unitary procedure has a smaller circuit width. On the other hand, it is unknown which method has smaller depth and fewer circuit gates. In this letter, it is shown that the unitary procedure has smaller depth and fewer circuit gates than the erasure correcting procedure which follows a standard framework performing measurements and unitary operators according to the measurements outcomes, when the circuits are designed for quantum secret sharing using the [[5, 1, 3]] binary stabilizer code. The evaluation can be reversed if one discovers a better circuit for the erasure correcting procedure which does not follow the standard framework.

  • Batch Updating of a Posterior Tree Distribution Over a Meta-Tree

    Yuta NAKAHARA  Toshiyasu MATSUSHIMA  

     
    LETTER-Learning

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:3
      Page(s):
    523-525

    Previously, we proposed a probabilistic data generation model represented by an unobservable tree and a sequential updating method to calculate a posterior distribution over a set of trees. The set is called a meta-tree. In this paper, we propose a more efficient batch updating method.

  • Information-Theoretic Perspectives for Simulation-Based Security in Multi-Party Computation

    Mitsugu IWAMOTO  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:3
      Page(s):
    360-372

    Information-theoretic security and computational security are fundamental paradigms of security in the theory of cryptography. The two paradigms interact with each other but have shown different progress, which motivates us to explore the intersection between them. In this paper, we focus on Multi-Party Computation (MPC) because the security of MPC is formulated by simulation-based security, which originates from computational security, even if it requires information-theoretic security. We provide several equivalent formalizations of the security of MPC under a semi-honest model from the viewpoints of information theory and statistics. The interpretations of these variants are so natural that they support the other aspects of simulation-based security. Specifically, the variants based on conditional mutual information and sufficient statistics are interesting because security proofs for those variants can be given by information measures and factorization theorem, respectively. To exemplify this, we show several security proofs of BGW (Ben-Or, Goldwasser, Wigderson) protocols, which are basically proved by constructing a simulator.

  • Assigning Proximity Facilities for Gatherings

    Shin-ichi NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    383-385

    In this paper we study a recently proposed variant of the r-gathering problem. An r-gathering of customers C to facilities F is an assignment A of C to open facilities F' ⊂ F such that r or more customers are assigned to each open facility. (Each facility needs enough number of customers to open.) Given an opening cost op(f) for each f∈F, and a connecting cost co(c,f) for each pair of c∈C and f∈F, the cost of an r-gathering A is max{maxc∈C{co(c, A(c))}, maxf∈F'{op(f)}}. The r-gathering problem consists of finding an r-gathering having the minimum cost. Assume that F is a set of locations for emergency shelters, op(f) is the time needed to prepare a shelter f∈F, and co(c,f) is the time needed for a person c∈C to reach assigned shelter f=A(c)∈F. Then an r-gathering corresponds to an evacuation plan such that each open shelter serves r or more people, and the r-gathering problem consists of finding an evacuation plan minimizing the evacuation time span. However in a solution above some person may be assigned to a farther open shelter although it has a closer open shelter. It may be difficult for the person to accept such an assignment for an emergency situation. Therefore, Armon considered the problem with one more additional constraint, that is, each customer should be assigned to a closest open facility, and gave a 9-approximation polynomial-time algorithm for the problem. We have designed a simple 3-approximation algorithm for the problem. The running time is O(r|C||F|).

  • Exploring the Effects of Japanese Font Designs on Impression Formation and Decision-Making in Text-Based Communication

    Rintaro CHUJO  Atsunobu SUZUKI  Ari HAUTASAARI  

     
    PAPER

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:3
      Page(s):
    354-362

    Text-based communication, such as text chat, is commonly employed in various contexts, both professional and personal. However, it lacks the rich emotional cues present in verbal and visual forms of communication, such as facial expressions and tone of voice, making it more challenging to convey emotions and increasing the likelihood of misunderstandings. In this study, we focused on typefaces as emotional cues employed in text-based communication and investigated the influence of font design on impression formation and decision-making through two experiments. The results of the experiments revealed the relationship between Japanese typeface design and impression formation, and indicated that advice presented in a font evoking an impression of high confidence was more likely to be accepted than advice presented in a font evoking an impression of low confidence.

  • Chained Block is NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    LETTER

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:3
      Page(s):
    320-324

    Chained Block is one of Nikoli's pencil puzzles. We study the computational complexity of Chained Block puzzles. It is shown that deciding whether a given instance of the Chained Block puzzle has a solution is NP-complete.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • A Reconstruction of Circular Binary String Using Substrings and Minimal Absent Words

    Takahiro OTA  Akiko MANADA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    409-416

    A circular string formed by connecting the first and the last symbols of a string is one of the simplest sequence forms, and it has been used for many applications such as data compression and fragment assembly problem. A sufficient condition on the lengths of substrings with frequencies for reconstruction of an input circular binary string is shown. However, there are no detailed descriptions on the proof of the sufficient condition and reconstruction algorithm. In this paper, we prove a necessary and sufficient condition on the lengths of substrings with frequencies for reconstruction of the circular string. We show the length is shorter than that of previous study for some circular strings. For improving the length, we use minimal absent words (MAWs) for given substrings of length k, and we propose a new construction algorithm of MAWs of length h(>k) while a conventional construction algorithm of MAWs can construct MAWs of length l(≤k). Moreover, we propose reconstruction algorithm of an input circular string for given substrings satisfying the new condition.

  • On a Spectral Lower Bound of Treewidth

    Tatsuya GIMA  Tesshu HANAKA  Kohei NORO  Hirotaka ONO  Yota OTACHI  

     
    LETTER

      Pubricized:
    2023/06/16
      Vol:
    E107-D No:3
      Page(s):
    328-330

    In this letter, we present a new lower bound for the treewidth of a graph in terms of the second smallest eigenvalue of its Laplacian matrix. Our bound slightly improves the lower bound given by Chandran and Subramanian [Inf. Process. Lett., 87 (2003)].

  • Dynamic Attentive Convolution for Facial Beauty Prediction

    Zhishu SUN  Zilong XIAO  Yuanlong YU  Luojun LIN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/11/07
      Vol:
    E107-D No:2
      Page(s):
    239-243

    Facial Beauty Prediction (FBP) is a significant pattern recognition task that aims to achieve consistent facial attractiveness assessment with human perception. Currently, Convolutional Neural Networks (CNNs) have become the mainstream method for FBP. The training objective of most conventional CNNs is usually to learn static convolution kernels, which, however, makes the network quite difficult to capture global attentive information, and thus usually ignores the key facial regions, e.g., eyes, and nose. To tackle this problem, we devise a new convolution manner, Dynamic Attentive Convolution (DyAttenConv), which integrates the dynamic and attention mechanism into convolution in kernel-level, with the aim of enforcing the convolution kernels adapted to each face dynamically. DyAttenConv is a plug-and-play module that can be flexibly combined with existing CNN architectures, making the acquisition of the beauty-related features more globally and attentively. Extensive ablation studies show that our method is superior to other fusion and attention mechanisms, and the comparison with other state-of-the-arts also demonstrates the effectiveness of DyAttenConv on facial beauty prediction task.

  • Interdigital and Multi-Via Structures for Mushroom-Type Metasurface Reflectors

    Taisei URAKAMI  Tamami MARUYAMA  Shimpei NISHIYAMA  Manato KUSAMIZU  Akira ONO  Takahiro SHIOZAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:2
      Page(s):
    309-320

    The novel patch element shapes with the interdigital and multi-via structures for mushroom-type metasurface reflectors are proposed for controlling the reflection phases. The interdigital structure provides a wide reflection phase range by changing the depth of the interdigital fingers. In addition, the multi-via structure provides the higher positive reflection phases such as near +180°. The sufficient reflection phase range of 360° and the low polarization dependent properties could be confirmed by the electromagnetic field simulation. The metasurface reflector for the normal incident plane wave was designed. The desired reflection angles and sharp far field patterns of the reflected beams could be confirmed in the simulation results. The prototype reflectors for the experiments should be designed in the same way as the primary reflector design of the reflector antenna. Specifically, the reflector design method based on the ray tracing method using the incident wave phase was proposed for the prototype. The experimental radiation pattern for the reflector antenna composed of the transmitting antenna (TX) and the prototype metasurface reflector was similar to the simulated radiation pattern. The effectiveness of the proposed structures and their design methods could be confirmed by these simulation and experiment results.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • Shared Latent Embedding Learning for Multi-View Subspace Clustering

    Zhaohu LIU  Peng SONG  Jinshuai MU  Wenming ZHENG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/10/17
      Vol:
    E107-D No:1
      Page(s):
    148-152

    Most existing multi-view subspace clustering approaches only capture the inter-view similarities between different views and ignore the optimal local geometric structure of the original data. To this end, in this letter, we put forward a novel method named shared latent embedding learning for multi-view subspace clustering (SLE-MSC), which can efficiently capture a better latent space. To be specific, we introduce a pseudo-label constraint to capture the intra-view similarities within each view. Meanwhile, we utilize a novel optimal graph Laplacian to learn the consistent latent representation, in which the common manifold is considered as the optimal manifold to obtain a more reasonable local geometric structure. Comprehensive experimental results indicate the superiority and effectiveness of the proposed method.

  • Frameworks for Privacy-Preserving Federated Learning

    Le Trieu PHONG  Tran Thi PHUONG  Lihua WANG  Seiichi OZAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-D No:1
      Page(s):
    2-12

    In this paper, we explore privacy-preserving techniques in federated learning, including those can be used with both neural networks and decision trees. We begin by identifying how information can be leaked in federated learning, after which we present methods to address this issue by introducing two privacy-preserving frameworks that encompass many existing privacy-preserving federated learning (PPFL) systems. Through experiments with publicly available financial, medical, and Internet of Things datasets, we demonstrate the effectiveness of privacy-preserving federated learning and its potential to develop highly accurate, secure, and privacy-preserving machine learning systems in real-world scenarios. The findings highlight the importance of considering privacy in the design and implementation of federated learning systems and suggest that privacy-preserving techniques are essential in enabling the development of effective and practical machine learning systems.

  • A Capacitance Varying Charge Pump with Exponential Stage-Number Dependence and Its Implementation by MEMS Technology

    Menghan SONG  Tamio IKEHASHI  

     
    PAPER-Electronic Circuits

      Pubricized:
    2023/06/26
      Vol:
    E107-C No:1
      Page(s):
    1-11

    A novel charge pump, Capacitance Varying Charge Pump (CVCP) is proposed. This charge pump is composed of variable capacitors and rectifiers, and the charge transfer is attained by changing the capacitance values in a manner similar to peristaltic pumps. The analysis of multi-stage CVCP reveals that the output voltage is exponentially dependent on the stage number. Thus, compared with the Dickson charge pump, this charge pump has an advantage in generating high voltages with small stages. As a practical example of CVCP, we present an implementation realized by a MEMS (Micro-Electro-Mechanical Systems) technology. Here, the variable capacitor is enabled by a comb-capacitor attached to a high-quality factor resonator. As the rectifier, a PN-junction diode formed in the MEMS layer is used. Simulations including the mechanical elements are carried out for this MEMS version of CVCP. The simulation results on the output voltage and load characteristics are shown to coincide well with the theoretical estimations. The MEMS CVCP is suited for MEMS devices and vibration energy harvesters.

21-40hit(5648hit)