The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Cu(4258hit)

501-520hit(4258hit)

  • The Panpositionable Pancyclicity of Locally Twisted Cubes

    Hon-Chan CHEN  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2902-2907

    In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.

  • Cycle Embedding in Generalized Recursive Circulant Graphs

    Shyue-Ming TANG  Yue-Li WANG  Chien-Yi LI  Jou-Ming CHANG  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2916-2921

    Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.

  • Controlling Chaotic Resonance in Systems with Chaos-Chaos Intermittency Using External Feedback

    Sou NOBUKAWA  Haruhiko NISHIMURA  Teruya YAMANISHI  Hirotaka DOHO  

     
    PAPER-Nonlinear Problems

      Vol:
    E101-A No:11
      Page(s):
    1900-1906

    Stochastic resonance (SR) is a phenomenon in which signal response in a nonlinear system is enhanced by noise. Fluctuating activities in deterministic chaos are known to cause a phenomenon called chaotic resonance (CR), which is similar to SR. Most previous studies on CR showed that these signal responses were controlled by internal parameters. However, in several applications of CR, it is difficult to control these parameters externally, particularly in biological systems. In this study, to overcome this difficulty, we propose a method for controlling the signal response of CR by adjusting the strength of external feedback control. By using this method, we demonstrate the control of CR in a one-dimensional cubic map, where CR arises from chaos-chaos switching to a weak input signal.

  • Understanding the Inconsistency between Behaviors and Descriptions of Mobile Apps

    Takuya WATANABE  Mitsuaki AKIYAMA  Tetsuya SAKAI  Hironori WASHIZAKI  Tatsuya MORI  

     
    PAPER-Mobile Application and Web Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2584-2599

    Permission warnings and privacy policy enforcement are widely used to inform mobile app users of privacy threats. These mechanisms disclose information about use of privacy-sensitive resources such as user location or contact list. However, it has been reported that very few users pay attention to these mechanisms during installation. Instead, a user may focus on a more user-friendly source of information: text description, which is written by a developer who has an incentive to attract user attention. When a user searches for an app in a marketplace, his/her query keywords are generally searched on text descriptions of mobile apps. Then, users review the search results, often by reading the text descriptions; i.e., text descriptions are associated with user expectation. Given these observations, this paper aims to address the following research question: What are the primary reasons that text descriptions of mobile apps fail to refer to the use of privacy-sensitive resources? To answer the research question, we performed empirical large-scale study using a huge volume of apps with our ACODE (Analyzing COde and DEscription) framework, which combines static code analysis and text analysis. We developed light-weight techniques so that we can handle hundred of thousands of distinct text descriptions. We note that our text analysis technique does not require manually labeled descriptions; hence, it enables us to conduct a large-scale measurement study without requiring expensive labeling tasks. Our analysis of 210,000 apps, including free and paid, and multilingual text descriptions collected from official and third-party Android marketplaces revealed four primary factors that are associated with the inconsistencies between text descriptions and the use of privacy-sensitive resources: (1) existence of app building services/frameworks that tend to add API permissions/code unnecessarily, (2) existence of prolific developers who publish many applications that unnecessarily install permissions and code, (3) existence of secondary functions that tend to be unmentioned, and (4) existence of third-party libraries that access to the privacy-sensitive resources. We believe that these findings will be useful for improving users' awareness of privacy on mobile software distribution platforms.

  • A Scalable and Seamless Connection Migration Scheme for Moving Target Defense in Legacy Networks

    Taekeun PARK  Koohong KANG  Daesung MOON  

     
    LETTER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2706-2709

    In this paper, we propose a scalable and seamless connection migration scheme for moving target defense in legacy networks. The main idea is that a host is allowed to receive incoming packets with a destination address that is either its current IP address or its previous IP address for a period of time because the host does not physically move into another network. Experimental results show that our scheme outperforms the existing connection migration mechanism regardless of the number of active connections in the host.

  • Air-Writing Recognition Based on Fusion Network for Learning Spatial and Temporal Features

    Buntueng YANA  Takao ONOYE  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1737-1744

    A fusion framework between CNN and RNN is proposed dedicatedly for air-writing recognition. By modeling the air-writing using both spatial and temporal features, the proposed network can learn more information than existing techniques. Performance of the proposed network is evaluated by using the alphabet and numeric datasets in the public database namely the 6DMG. Average accuracy of the proposed fusion network outperforms other techniques, i.e. 99.25% and 99.83% are observed in the alphabet gesture and the numeric gesture, respectively. Simplified structure of RNN is also proposed, which can attain about two folds speed-up of ordinary BLSTM network. It is also confirmed that only the distance between consecutive sampling points is enough to attain high recognition performance.

  • An Overview of Cyber Security for Connected Vehicles Open Access

    Junko TAKAHASHI  

     
    INVITED PAPER

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2561-2575

    The demand for and the scope of connected services have rapidly grown and developed in many industries such as electronic appliances, robotics, and industry automation. In the automotive field, including connected vehicles, different types of connected services have become available and they provide convenience and comfort with users while yielding new business opportunities. With the advent of connected vehicles, the threat of cyber attacks has become a serious issue and protection methods against these attacks are urgently needed to provide safe and secure connected services. From 2017, attack methods have become more sophisticated through different attack surfaces attached to navigation systems and telematics modules, and security requirements to circumvent such attacks have begun to be established. Individual threats have been addressed previously; however, there are few reports that provide an overview of cyber security related to connected vehicles. This paper gives our perspective on cyber security for connected vehicles based on a survey of recent studies related to vehicle security. To introduce these studies, the environment surrounding connected vehicles is classified into three categories: inside the vehicle, communications between the back-end systems and vehicles, and the back-end systems. In each category, this paper introduces recent trends in cyber attacks and the protection requirements that should be developed for connected services. We show that the overall security covering the three categories must be considered because the security of the vehicle is jeopardized even if one item in the categories is not covered. We believe that this paper will further contribute to development of all service systems related to connected vehicles including autonomous vehicles and to the investigation into cyber security against these attacks.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

  • Secure and Fast Near-Field Acoustic Communication Using Acoustic and Vibrational Signals

    Saki NISHIHARA  Tadashi EBIHARA  Koichi MIZUTANI  Naoto WAKATSUKI  

     
    PAPER-Communication Theory and Signals, Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1841-1848

    In this paper, we propose a secure near-field communication (NFC) for smartphones by combining acoustic and vibrational communication. In our hybrid system, a transmitter transmits an encrypted message and encryption key from a loudspeaker and vibration motor, respectively. While the sound emitted from the loudspeaker propagates through the air, the vibration emitted by the vibration motor propagates through the body of smartphones. Hence, only receivers touching the transmitter can receive both the encrypted message and the key, resulting in secure communication. We designed a software modulator and demodulator suitable for the vibrational communication by using return-to-zero (RZ) code. Then we established a hybrid communication system by combining acoustic and vibrational communication modems, and evaluated its performance in experiments. The results indicate that our hybrid system achieved a secure (among physically contacted devices) and fast (800kbps) NFC for smartphones.

  • Cube-Based Encryption-then-Compression System for Video Sequences

    Kosuke SHIMIZU  Taizo SUZUKI  Keisuke KAMEYAMA  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1815-1822

    We propose the cube-based perceptual encryption (C-PE), which consists of cube scrambling, cube rotation, cube negative/positive transformation, and cube color component shuffling, and describe its application to the encryption-then-compression (ETC) system of Motion JPEG (MJPEG). Especially, cube rotation replaces the blocks in the original frames with ones in not only the other frames but also the depth-wise cube sides (spatiotemporal sides) unlike conventional block-based perceptual encryption (B-PE). Since it makes intra-block observation more difficult and prevents unauthorized decryption from only a single frame, it is more robust than B-PE against attack methods without any decryption key. However, because the encrypted frames including the blocks from the spatiotemporal sides affect the MJPEG compression performance slightly, we also devise a version of C-PE with no spatiotemporal sides (NSS-C-PE) that hardly affects compression performance. C-PE makes the encrypted video sequence robust against the only single frame-based algorithmic brute force (ABF) attack with only 21 cubes. The experimental results show the compression efficiency and encryption robustness of the C-PE/NSS-C-PE-based ETC system. C-PE-based ETC system shows mixed results depending on videos, whereas NSS-C-PE-based ETC system shows that the BD-PSNR can be suppressed to about -0.03dB not depending on videos.

  • Polymer Distribution Control of Polymer-Dispersed Liquid Crystals by Uni-Directionally Diffused UV Irradiation Process Open Access

    Yuya HORII  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Vol:
    E101-C No:11
      Page(s):
    857-862

    Recently, a control technique of light distribution pattern has become important to improve the functionality and the light utilization efficiency of electronic displays, illumination devices and so on. As a light control technique, polymer-dispersed liquid crystals (PDLCs) have been commonly used so far. However, a precise control of the light diffusion distribution of conventional PDLC has been difficult due to the random polymer network structure, which results in the low light utilization efficiency. On the other hand, reverse-mode PDLCs with homogeneously aligned molecules can anisotropically diffuse light. The reverse-mode PDLC, however, has polarization dependency in the haze value due to homogeneously aligned molecules, which also results in the low light utilization efficiency. Therefore, it is necessary to establish the optimization method of light diffusion distribution without the molecules alignment treatment, and we have proposed a novel PDLC with structure-controlled polymer network which was fabricated by the irradiation with uni-directionally diffused UV light. In this paper, we investigated the effect of the process temperature during UV irradiation on the internal structure and light diffusion distribution of the proposed PDLC. As a result, in case that the mixture during UV irradiation was in isotropic phase, we clarified that the structure-controlled PDLCs with alternating striped LCs/polymer pattern could be obtained because the mixture was sufficiently irradiated with uni-directionally diffused UV light. For the high haze, this structure-controlled PDLC should be fabricated as low temperature as possible with maintaining the mixture in isotropic phase so that the mixture was not a nano-scaled molecular mixing state. Also, this PDLC had no polarization dependency in the haze value and could electrically switch the light distribution pattern between anisotropic light diffusion and light transmission. From the above results, we concluded that the proposed PDLC could precisely control the light diffusion distribution, and realize the high light utilization efficiency.

  • A Secure In-Depth File System Concealed by GPS-Based Mounting Authentication for Mobile Devices

    Yong JIN  Masahiko TOMOISHI  Satoshi MATSUURA  Yoshiaki KITAGUCHI  

     
    PAPER-Mobile Application and Web Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2612-2621

    Data breach and data destruction attack have become the critical security threats for the ICT (Information and Communication Technology) infrastructure. Both the Internet service providers and users are suffering from the cyber threats especially those to confidential data and private information. The requirements of human social activities make people move carrying confidential data and data breach always happens during the transportation. The Internet connectivity and cryptographic technology have made the usage of confidential data much secure. However, even with the high deployment rate of the Internet infrastructure, the concerns for lack of the Internet connectivity make people carry data with their mobile devices. In this paper, we describe the main patterns of data breach occur on mobile devices and propose a secure in-depth file system concealed by GPS-based mounting authentication to mitigate data breach on mobile devices. In the proposed in-depth file system, data can be stored based on the level of credential with corresponding authentication policy and the mounting operation will be only successful on designated locations. We implemented a prototype system using Veracrypt and Perl language and confirmed that the in-depth file system worked exactly as we expected by evaluations on two locations. The contribution of this paper includes the clarification that GPS-based mounting authentication for a file system can reduce the risk of data breach for mobile devices and a realization of prototype system.

  • Ad-hoc Analytical Framework of Bitcoin Investigations for Law Enforcement

    Hiroki KUZUNO  Giannis TZIAKOURIS  

     
    PAPER-Forensics and Risk Analysis

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2644-2657

    Bitcoin is the leading cryptocurrency in the world with a total marketcap of nearly USD 33 billion, [1] with 370,000 transactions recorded daily[2]. Pseudo-anonymous, decentralized peer-to-peer electronic cash systems such as Bitcoin have caused a paradigm shift in the way that people conduct financial transactions and purchase goods. Although cryptocurrencies enable users to securely and anonymously exchange money, they can also facilitate illegal criminal activities. Therefore, it is imperative that law enforcement agencies develop appropriate analytical processes that will allow them to identify and investigate criminal activities in the Blockchain (a distributed ledger). In this paper, INTERPOL, through the INTERPOL Global Complex for Innovation, proposes a Bitcoin analytical framework and a software system that will assist law enforcement agencies in the real-time analysis of the Blockchain while providing digital crime analysts with tracing and visualization capabilities. By doing so, it is feasible to render transactions decipherable and comprehensible for law enforcement investigators and prosecutors. The proposed solution is evaluated against three criminal case studies linked to Darknet markets, ransomware and DDoS extortion.

  • Client-Side Evil Twin Attacks Detection Using Statistical Characteristics of 802.11 Data Frames

    Qian LU  Haipeng QU  Yuan ZHUANG  Xi-Jun LIN  Yuzhan OUYANG  

     
    PAPER-Information Network

      Pubricized:
    2018/07/02
      Vol:
    E101-D No:10
      Page(s):
    2465-2473

    With the development of wireless network technology and popularization of mobile devices, the Wireless Local Area Network (WLAN) has become an indispensable part of our daily life. Although the 802.11-based WLAN provides enormous convenience for users to access the Internet, it also gives rise to a number of security issues. One of the most severe threat encountered by Wi-Fi users is the evil twin attacks. The evil twin, a kind of rogue access points (RAPs), masquerades as a legitimate access point (AP) to lure users to connect it. Due to the characteristics of strong concealment, high confusion, great harmfulness and easy implementation, the evil twin has led to significant loss of sensitive information and become one of the most prominent security threats in recent years. In this paper, we propose a passive client-based detection solution that enables users to independently identify and locate evil twins without any assistance from a wireless network administrator. Because of the forwarding behavior of evil twins, proposed method compares 802.11 data frames sent by target APs to users to determine evil twin attacks. We implemented our detection technique in a Python tool named ET-spotter. Through implementation and evaluation in our study, our algorithm achieves 96% accuracy in distinguishing evil twins from legitimate APs.

  • Development of a Low Standby Power Six-Transistor CMOS SRAM Employing a Single Power Supply

    Nobuaki KOBAYASHI  Tadayoshi ENOMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:10
      Page(s):
    822-830

    We developed and applied a new circuit, called the “Self-controllable Voltage Level (SVL)” circuit, not only to expand both “write” and “read” stabilities, but also to achieve a low stand-by power and data holding capability in a single low power supply, 90-nm, 2-kbit, six-transistor CMOS SRAM. The SVL circuit can adaptively lower and higher the word-line voltages for a “read” and “write” operation, respectively. It can also adaptively lower and higher the memory cell supply voltages for the “write” and “hold” operations, and “read” operation, respectively. This paper focuses on the “hold” characteristics and the standby power dissipations (PST) of the developed SRAM. The average PST of the developed SRAM is only 0.984µW, namely, 9.57% of that (10.28µW) of the conventional SRAM at a supply voltage (VDD) of 1.0V. The data hold margin of the developed SRAM is 0.1839V and that of the conventional SRAM is 0.343V at the supply voltage of 1.0V. An area overhead of the SVL circuit is only 1.383% of the conventional SRAM.

  • Search-Based Concolic Execution for SW Vulnerability Discovery

    Rustamov FAYOZBEK  Minjun CHOI  Joobeom YUN  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/07/02
      Vol:
    E101-D No:10
      Page(s):
    2526-2529

    Huge amounts of software appear nowadays. The more the number of software increases, the more increased software vulnerabilities are. Although some automatic methods have been proposed in order to detect and remove software vulnerabilities, they still require a lot of time so they have a limitation in the real world. To solve this problem, we propose BugHunter which automatically tests a binary file compiled with a C++ compiler. It searches for unsafe API calls and automatically executes to the program block that have an unsafe API call. Also, we showed that BugHunter is more efficient than angr through experiments. As a result, BugHunter is very helpful to find a software vulnerability in a short time.

  • A 920MHz Lumped-Element Wilkinson Power Divider Utilizing LC-Ladder Circuits

    Tadashi KAWAI  Kensuke NAGANO  Akira ENOKIHARA  

     
    BRIEF PAPER

      Vol:
    E101-C No:10
      Page(s):
    801-804

    This paper presents a lumped-element Wilkinson power divider (WPD) using LC-ladder circuits composed of a capacitor and an inductor, and a series LR/CR circuit. The proposed WPD has only seven elements. As a result of designing the divider based on an even/odd mode analysis technique, we theoretically show that broadband WPDs can be realized compared to lumped-element WPDs composed of Π/T-networks and an isolation resistor. By designing the WPD to match at two operating frequencies, the relative bandwidth of about 42% can be obtained. This value is larger than that of the conventional WPD based on the distributed circuit theory. Electromagnetic simulation and experiment are performed to verify the design procedure for the lumped-element WPD designed at a center frequency of 922.5MHz, and good agreement with both is shown.

  • Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    Yuki KADA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    775-783

    For more flexible and efficient use of radio spectrum, reconfigurable RF devices have important roles in the future wireless systems. In 5G mobile communications, concurrent multi-band operation using new SHF bands is considered. This paper presents a new configuration of dual-band SHF BPF consisting of a low SHF three-bit reconfigurable BPF and a high SHF BPF. The proposed dual-band BPF employs direct parallel connection without additional divider/combiner to reduce circuit elements and simplify the BPF. In order to obtain a good isolation between two passbands while achieving a wide center frequency range in the low SHF BPF, input/output impedances and external Qs of BPFs are analyzed and feedbacked to the design. A high SHF BPF design method with tapped transmission line resonators and lumped-element coupling is also presented to make the BPF compact. Two types of prototypes; all inductor-coupled dual-band BPF and C-L-C coupled dual-band BPF were designed and fabricated. Both prototypes have low SHF reconfigurable center frequency range from 3.5 to 5 GHz as well as high SHF center frequency of 8.5 GHz with insertion loss below 2.0 dB.

  • Improving Per-Node Computing Efficiency by an Adaptive Lock-Free Scheduling Model

    Zhishuo ZHENG  Deyu QI  Naqin ZHOU  Xinyang WANG  Mincong YU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/07/06
      Vol:
    E101-D No:10
      Page(s):
    2423-2435

    Job scheduling on many-core computers with tens or even hundreds of processing cores is one of the key technologies in High Performance Computing (HPC) systems. Despite many scheduling algorithms have been proposed, scheduling remains a challenge for executing highly effective jobs that are assigned in a single computing node with diverse scheduling objectives. On the other hand, the increasing scale and the need for rapid response to changing requirements are hard to meet with existing scheduling models in an HPC node. To address these issues, we propose a novel adaptive scheduling model that is applied to a single node with a many-core processor; this model solves the problems of scheduling efficiency and scalability through an adaptive optimistic control mechanism. This mechanism exposes information such that all the cores are provided with jobs and the tools necessary to take advantage of that information and thus compete for resources in an uncoordinated manner. At the same time, the mechanism is equipped with adaptive control, allowing it to adjust the number of running tools dynamically when frequent conflict happens. We justify this scheduling model and present the simulation results for synthetic and real-world HPC workloads, in which we compare our proposed model with two widely used scheduling models, i.e. multi-path monolithic and two-level scheduling. The proposed approach outperforms the other models in scheduling efficiency and scalability. Our results demonstrate that the adaptive optimistic control affords significant improvements for HPC workloads in the parallelism of the node-level scheduling model and performance.

  • Uncertain Rule Based Method for Determining Data Currency

    Mohan LI  Jianzhong LI  Siyao CHENG  Yanbin SUN  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/07/10
      Vol:
    E101-D No:10
      Page(s):
    2447-2457

    Currency is one of the important measurements of data quality. The main purpose of the study on data currency is to determine whether a given data item is up-to-date. Though there are already several works on determining data currency, all the proposed methods have limitations. Some works require timestamps of data items that are not always available, and others are based on certain currency rules that can only decide relevant currency and cannot express uncertain semantics. To overcome the limitations of the previous methods, this paper introduces a new approach for determining data currency based on uncertain currency rules. First, a class of uncertain currency rules is provided to infer the possible valid time for a given data item, and then based on the rules, data currency is formally defined. After that, a polynomial time algorithm for evaluating data currency is given based on the uncertain currency rules. Using real-life data sets, the effectiveness and efficiency of the proposed method are experimentally verified.

501-520hit(4258hit)