The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Cu(4258hit)

521-540hit(4258hit)

  • Design of Capacitive Coupler in Underwater Wireless Power Transfer Focusing on kQ Product

    Masaya TAMURA  Yasumasa NAKA  Kousuke MURAI  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    759-766

    This paper presents the design of a capacitive coupler for underwater wireless power transfer (U-WPT) focusing on kQ product. Power transfer efficiency hinges on the coupling coefficient k between the couplers and Q-factor of water calculated from the complex permittivity. High efficiency can be achieved by handling k and the Q-factor effectively. First, the pivotal elements on k are derived from the equivalent circuit of the coupler. Next, the frequency characteristic of the Q-factor in tap water is calculated from the measured results. Then, the design parameters in which kQ product has the maximal values are determined. Finally, it is demonstrated that the efficiency of U-WPT with the capacitive coupling designed by our method achieves approximately 80%.

  • Numerical Simulation of Single-Electron Tunneling in Random Arrays of Small Tunnel Junctions Formed by Percolation of Conductive Nanoparticles

    Yoshinao MIZUGAKI  Hiroshi SHIMADA  Ayumi HIRANO-IWATA  Fumihiko HIROSE  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:10
      Page(s):
    836-839

    We numerically simulated electrical properties, i.e., the resistance and Coulomb blockade threshold, of randomly-placed conductive nanoparticles. In simulation, tunnel junctions were assumed to be formed between neighboring particle-particle and particle-electrode connections. On a plane of triangle 100×100 grids, three electrodes, the drain, source, and gate, were defined. After random placements of conductive particles, the connection between the drain and source electrodes were evaluated with keeping the gate electrode disconnected. The resistance was obtained by use of a SPICE-like simulator, whereas the Coulomb blockade threshold was determined from the current-voltage characteristics simulated using a Monte-Carlo simulator. Strong linear correlation between the resistance and threshold voltage was confirmed, which agreed with results for uniform one-dimensional arrays.

  • Rep-Cubes: Dissection of a Cube into Nets

    Dawei XU  Jinfeng HUANG  Yuta NAKANE  Tomoo YOKOYAMA  Takashi HORIYAMA  Ryuhei UEHARA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1420-1430

    Last year, a new notion of rep-cube was proposed. A rep-cube is a polyomino that is a net of a cube, and it can be divided into some polyominoes such that each of them can be folded into a cube. This notion was inspired by the notions of polyomino and rep-tile, which were introduced by Solomon W. Golomb. It was proved that there are infinitely many distinct rep-cubes. In this paper, we investigate this new notion and show further results.

  • Efficient Approach for Mitigating Mobile Phishing Attacks

    Hyungkyu LEE  Younho LEE  Changho SEO  Hyunsoo YOON  

     
    PAPER-Internet

      Pubricized:
    2018/03/23
      Vol:
    E101-B No:9
      Page(s):
    1982-1996

    We propose a method for efficiently detecting phishing attacks in mobile environments. When a user visits a website of a certain URL, the proposed method first compares the URL to a generated whitelist. If the URL is not in the whitelist, it detects if the site is a phishing site based on the results of Google search with a carefully refined URL. In addition, the phishing detection is performed only when the user provides input to the website, thereby reducing the frequency of invoking phishing detection to decrease the amount of power used. We implemented the proposed method and used 8315 phishing sites and the same number of legitimate websites for evaluating the performance of the proposed method. We achieved a phishing detection rate of 99.22% with 81.22% reduction in energy consumption as compared to existing approaches that also use search engine for phishing detection. Moreover, because the proposed method does not employ any other algorithm, software, or comparison group, the proposed method can be easily deployed.

  • Video Saliency Detection Using Spatiotemporal Cues

    Yu CHEN  Jing XIAO  Liuyi HU  Dan CHEN  Zhongyuan WANG  Dengshi LI  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2201-2208

    Saliency detection for videos has been paid great attention and extensively studied in recent years. However, various visual scene with complicated motions leads to noticeable background noise and non-uniformly highlighting the foreground objects. In this paper, we proposed a video saliency detection model using spatio-temporal cues. In spatial domain, the location of foreground region is utilized as spatial cue to constrain the accumulation of contrast for background regions. In temporal domain, the spatial distribution of motion-similar regions is adopted as temporal cue to further suppress the background noise. Moreover, a backward matching based temporal prediction method is developed to adjust the temporal saliency according to its corresponding prediction from the previous frame, thus enforcing the consistency along time axis. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.

  • Reciprocal Kit-Build Concept Map: An Approach for Encouraging Pair Discussion to Share Each Other's Understanding

    Warunya WUNNASRI  Jaruwat PAILAI  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2018/05/29
      Vol:
    E101-D No:9
      Page(s):
    2356-2367

    Collaborative learning is an active teaching and learning strategy, in which learners who give each other elaborated explanations can learn most. However, it is difficult for learners to explain their own understanding elaborately in collaborative learning. In this study, we propose a collaborative use of a Kit-Build concept map (KB map) called “Reciprocal KB map”. In a Reciprocal KB map for a pair discussion, at first, the two participants make their own concept maps expressing their comprehension. Then, they exchange the components of their maps and request each other to reconstruct their maps by using the components. The differences between the original map and the reconstructed map are diagnosed automatically as an advantage of the KB map. Reciprocal KB map is expected to encourage pair discussion to recognize the understanding of each other and to create an effective discussion. In an experiment reported in this paper, Reciprocal KB map was used for supporting a pair discussion and was compared with a pair discussion which was supported by a traditional concept map. Nineteen pairs of university students were requested to use the traditional concept map in their discussion, while 20 pairs of university students used Reciprocal KB map for discussing the same topic. The results of the experiment were analyzed using three metrics: a discussion score, a similarity score, and questionnaires. The discussion score, which investigates the value of talk in discussion, demonstrates that Reciprocal KB map can promote more effective discussion between the partners compared to the traditional concept map. The similarity score, which evaluates the similarity of the concept maps, demonstrates that Reciprocal KB map can encourage the pair of partners to understand each other better compared to the traditional concept map. Last, the questionnaires illustrate that Reciprocal KB map can support the pair of partners to collaborate in the discussion smoothly and that the participants accepted this method for sharing their understanding with each other. These results suggest that Reciprocal KB map is a promising approach for encouraging pairs of partners to understand each other and to promote the effective discussions.

  • A Unified Neural Network for Quality Estimation of Machine Translation

    Maoxi LI  Qingyu XIANG  Zhiming CHEN  Mingwen WANG  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2417-2421

    The-state-of-the-art neural quality estimation (QE) of machine translation model consists of two sub-networks that are tuned separately, a bidirectional recurrent neural network (RNN) encoder-decoder trained for neural machine translation, called the predictor, and an RNN trained for sentence-level QE tasks, called the estimator. We propose to combine the two sub-networks into a whole neural network, called the unified neural network. When training, the bidirectional RNN encoder-decoder are initialized and pre-trained with the bilingual parallel corpus, and then, the networks are trained jointly to minimize the mean absolute error over the QE training samples. Compared with the predictor and estimator approach, the use of a unified neural network helps to train the parameters of the neural networks that are more suitable for the QE task. Experimental results on the benchmark data set of the WMT17 sentence-level QE shared task show that the proposed unified neural network approach consistently outperforms the predictor and estimator approach and significantly outperforms the other baseline QE approaches.

  • Computational Power of Threshold Circuits of Energy at most Two

    Hiroki MANIWA  Takayuki OKI  Akira SUZUKI  Kei UCHIZAWA  Xiao ZHOU  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1431-1439

    The energy of a threshold circuit C is defined to be the maximum number of gates outputting ones for an input assignment, where the maximum is taken over all the input assignments. In this paper, we study computational power of threshold circuits of energy at most two. We present several results showing that the computational power of threshold circuits of energy one and the counterpart of energy two are remarkably different. In particular, we give an explicit function which requires an exponential size for threshold circuits of energy one, but is computable by a threshold circuit of size just two and energy two. We also consider MOD functions and Generalized Inner Product functions, and show that these functions also require exponential size for threshold circuits of energy one, but are computable by threshold circuits of substantially less size and energy two.

  • Meeting Tight Security for Multisignatures in the Plain Public Key Model

    Naoto YANAI  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1484-1493

    Multisignatures are digital signatures for a group consisting of multiple signers where each signer signs common documents via interaction with its co-signers and the data size of the resultant signatures for the group is independent of the number of signers. In this work, we propose a multisignature scheme, whose security can be tightly reduced to the CDH problem in bilinear groups, in the strongest security model where nothing more is required than that each signer has a public key, i.e., the plain public key model. Loosely speaking, our main idea for a tight reduction is to utilize a three-round interaction in a full-domain hash construction. Namely, we surmise that a full-domain hash construction with three-round interaction will become tightly secure under the CDH problem. In addition, we show that the existing scheme by Zhou et al. (ISC 2011) can be improved to a construction with a tight security reduction as an application of our proof framework.

  • Pile-Shifting Scramble for Card-Based Protocols

    Akihiro NISHIMURA  Yu-ichi HAYASHI  Takaaki MIZUKI  Hideaki SONE  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1494-1502

    Card-based cryptographic protocols provide secure multi-party computations using a deck of physical cards. The most important primitive of those protocols is the shuffling operation, and most of the existing protocols rely on uniform cyclic shuffles (such as the random cut and random bisection cut) in which each possible outcome is equally likely and all possible outcomes constitute a cyclic subgroup. However, a couple of protocols with non-uniform and/or non-cyclic shuffles were proposed by Koch, Walzer, and Härtel at Asiacrypt 2015. Compared to the previous protocols, their protocols require fewer cards to securely produce a hidden AND value, although to implement of such unconventional shuffles appearing in their protocols remains an open problem. This paper introduces “pile-shifting scramble,” which can be a secure implementation of those shuffles. To implement such unconventional shuffles, we utilize physical cases that can store piles of cards, such as boxes and envelopes. Therefore, humans are able to perform the shuffles using these everyday objects. Furthermore, we show that a certain class of non-uniform and/or non-cyclic shuffles having two possible outcomes can be implemented by the pile-shifting scramble. This also implies that we can improve upon the known COPY protocol using three card cases so that the number of cases required can be reduced to two.

  • Equivalent Circuit of Yee's Cells and Its Application to Mixed Electromagnetic and Circuit Simulations

    Yuichi TANJI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:9
      Page(s):
    703-710

    An equivalent circuit of Yee's cells is proposed for mixed electromagnetic and circuit simulations. Using the equivalent circuit, a mixed electromagnetic and circuit simulator can be developed, in which the electromagnetic field and circuit responses are simultaneously analyzed. Representing the electromagnetic system as a circuit, active and passive device models in a circuit simulator can be used for the mixed simulations without any modifications. Hence, the propose method is very useful for designing various electronic systems. To evaluate the mixed simulations with the equivalent circuit, two implementations with shared or distributed memory computer system are presented. In the numerical examples, we evaluate the performances of the prototype simulators to demonstrate the effectiveness.

  • Depth Two (n-2)-Majority Circuits for n-Majority

    Kazuyuki AMANO  Masafumi YOSHIDA  

     
    LETTER

      Vol:
    E101-A No:9
      Page(s):
    1543-1545

    We present an explicit construction of a MAJn-2 °MAJn-2 circuit computing MAJn for every odd n≥7. This gives a partial solution to an open problem by Kulikov and Podolskii (Proc. of STACS 2017, Article No.49).

  • A Fused Continuous Floating-Point MAC on FPGA

    Min YUAN  Qianjian XING  Zhenguo MA  Feng YU  Yingke XU  

     
    LETTER-Circuit Theory

      Vol:
    E101-A No:9
      Page(s):
    1594-1598

    In this letter, we present a novel single-precision floating-point multiply-accumulator (FNA-MAC) to achieve lower hardware resource, reduced computing latency and improved computing accuracy for continuous dot product operations. By further fusing the normalization and alignment in the traditional FMA algorithm, the proposed architecture eliminates the first N-1 normalization and rounding operations for an N-point dot product, and preserves the precision of interim results in a significant bit size that is twice of that in the traditional methods. The normalization and rounding of the final result is processed at the cost of consuming an additional multiply-add operation. The simulation results show that the improvement in computational accuracy is significant. Meanwhile, when comparing to a recently published FMA design, the proposed FNA-MAC can reduce the slice look-up table/flip-flop resource and computing latency by a fact of 18%, 33.3%, respectively.

  • Winding Ratio Design of Transformer in Equivalent Circuit of Circular Patch Array Absorber

    Ryosuke SUGA  Tomohiko NAKAMURA  Daisuke KITAHARA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    651-654

    An equivalent circuit of a circular patch array absorber has been proposed, however the method to identify a winding ratio of a transformer in its circuit have never been reported. In this paper, it is indicated that the ratio is proportionate to the area ratio between patch and unit cell of the absorber, and the design method of the winding ratio is proposed. The winding ratio derived by the proposed method is agreed well with that by using electromagnetic simulator within 3% error. Moreover, the operating frequency and 15 dB bandwidth of the fabricated absorber designed by proposed method are agreed with those derived by the circuit simulation within 0.4% and 0.1% errors. Thus the validity of the proposed method is verified.

  • DOA Estimation of Quasi-Stationary Signals Exploiting Virtual Extension of Coprime Array Imbibing Difference and Sum Co-Array

    Tarek Hasan AL MAHMUD  Zhongfu YE  Kashif SHABIR  Yawar Ali SHEIKH  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1876-1883

    Using local time frames to treat non-stationary real world signals as stationary yields Quasi-Stationary Signals (QSS). In this paper, direction of arrival (DOA) estimation of uncorrelated non-circular QSS is analyzed by applying a novel technique to achieve larger consecutive lags using coprime array. A scheme of virtual extension of coprime array is proposed that exploits the difference and sum co-array which can increase consecutive co-array lags in remarkable number by using less number of sensors. In the proposed method, cross lags as well as self lags are exploited for virtual extension of co-arrays both for differences and sums. The method offers higher degrees of freedom (DOF) with a larger number of non-negative consecutive lags equal to MN+2M+1 by using only M+N-1 number of sensors where M and N are coprime with congenial interelement spacings. A larger covariance matrix can be achieved by performing covariance like computations with the Khatri-Rao (KR) subspace based approach which can operate in undetermined cases and even can deal with unknown noise covariances. This paper concentrates on only non-negative consecutive lags and subspace based method like Multiple Signal Classification (MUSIC) based approach has been executed for DOA estimation. Hence, the proposed method, named Virtual Extension of Coprime Array imbibing Difference and Sum (VECADS), in this work is promising to create larger covariance matrix with higher DOF for high resolution DOA estimation. The coprime distribution yielded by the proposed approach can yield higher resolution DOA estimation while avoiding the mutual coupling effect. Simulation results demonstrate its effectiveness in terms of the accuracy of DOA estimation even with tightly aligned sources using fewer sensors compared with other techniques like prototype coprime, conventional coprime, Coprime Array with Displaced Subarrays (CADiS), CADiS after Coprime Array with Compressed Inter-element Spacing (CACIS) and nested array seizing only difference co-array.

  • Transform Electric Power Curve into Dynamometer Diagram Image Using Deep Recurrent Neural Network

    Junfeng SHI  Wenming MA  Peng SONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/05/09
      Vol:
    E101-D No:8
      Page(s):
    2154-2158

    To learn the working situation of rod-pumped wells under ground, we always need to analyze dynamometer diagrams, which are generated by the load sensor and displacement sensor. Rod-pumped wells are usually located in the places with extreme weather, and these sensors are installed on some special oil equipments in the open air. As time goes by, sensors are prone to generating unstable and incorrect data. Unfortunately, load sensors are too expensive to frequently reinstall. Therefore, the resulting dynamometer diagrams sometimes cannot make an accurate diagnosis. Instead, as an absolutely necessary equipment of the rod-pumped well, the electric motor has much longer life and cannot be easily impacted by the weather. The electric power curve during a swabbing period can also reflect the working situation under ground, but is much harder to explain than the dynamometer diagram. This letter presented a novel deep learning architecture, which can transform the electric power curve into the dimensionless dynamometer diagram image. We conduct our experiments on a real-world dataset, and the results show that our method can get an impressive transformation accuracy.

  • Dielectric Measurement in Liquids Using an Estimation Equation without Short Termination via the Cut-Off Circular Waveguide Reflection Method

    Kouji SHIBATA  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    627-636

    In this study, a theory for estimating the dielectric properties for unknown materials from three reference materials without using a short condition was developed. Specifically, the relationships linking the S parameter, electrostatic capacity, the measurement instrument and the jig were determined for four equivalent circuits with three reference materials and an unknown material inserted into the jig. An equation for estimation of complex permittivity from three reference materials without short termination was thus derived. The formula's accuracy was then numerically verified for cases in which values indicating the dielectric properties of the reference materials and the actual material differed significantly, thereby verifying the effectiveness of the proposed method. Next, it was also found that dielectric constant could be correctly determined even when the observation plane was moved to the SOL calibration plane on the generator side. The dielectric properties of various liquids in the 0.50, 1.0 and 2.5 GHz bands as measured using the proposed method were then compared with corresponding conventional-method values. Finally, the validity of the proposed method was also indicated by measurement values showing the frequency characteristics of dielectric properties at frequencies ranging from 0.50 to 3.0 GHz.

  • A Study on Dependency of Transmission Loss of Shielded-Flexible Printed Circuits for Differential Signaling

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    660-663

    In this paper, dependency of transmission loss of shielded-flexible printed circuits (FPC) for differential-signaling on thickness of conductive shield is studied by numerical modeling based on an equivalent circuit model compared with the experimental results. Especially, the transmission loss due to the thin conductive shield is focused. The insufficient shielding performance for near magnetic field decreases the resistance due to the thin conductive shield. It is shown that the resistance due to the thin conductive shield at lower frequencies is smaller than that in the “thick conductive shield” case.

  • Predicting Taxi Destination by Regularized RNN with SDZ

    Lei ZHANG  Guoxing ZHANG  Zhizheng LIANG  Qingfu FAN  Yadong LI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2141-2144

    The traditional Markov prediction methods of the taxi destination rely only on the previous 2 to 3 GPS points. They negelect long-term dependencies within a taxi trajectory. We adopt a Recurrent Neural Network (RNN) to explore the long-term dependencies to predict the taxi destination as the multiple hidden layers of RNN can store these dependencies. However, the hidden layers of RNN are very sensitive to small perturbations to reduce the prediction accuracy when the amount of taxi trajectories is increasing. In order to improve the prediction accuracy of taxi destination and reduce the training time, we embed suprisal-driven zoneout (SDZ) to RNN, hence a taxi destination prediction method by regularized RNN with SDZ (TDPRS). SDZ can not only improve the robustness of TDPRS, but also reduce the training time by adopting partial update of parameters instead of a full update. Experiments with a Porto taxi trajectory data show that TDPRS improves the prediction accuracy by 12% compared to RNN prediction method in literature[4]. At the same time, the prediction time is reduced by 7%.

  • From Easy to Difficult: A Self-Paced Multi-Task Joint Sparse Representation Method

    Lihua GUO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2115-2122

    Multi-task joint sparse representation (MTJSR) is one kind of efficient multi-task learning (MTL) method for solving different problems together using a shared sparse representation. Based on the learning mechanism in human, which is a self-paced learning by gradually training the tasks from easy to difficult, I apply this mechanism into MTJSR, and propose a multi-task joint sparse representation with self-paced learning (MTJSR-SP) algorithm. In MTJSR-SP, the self-paced learning mechanism is considered as a regularizer of optimization function, and an iterative optimization is applied to solve it. Comparing with the traditional MTL methods, MTJSR-SP has more robustness to the noise and outliers. The experimental results on some datasets, i.e. two synthesized datasets, four datasets from UCI machine learning repository, an oxford flower dataset and a Caltech-256 image categorization dataset, are used to validate the efficiency of MTJSR-SP.

521-540hit(4258hit)