The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4073hit)

2181-2200hit(4073hit)

  • Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Andrew W. POON  Linjie ZHOU  Fang XU  Chao LI  Hui CHEN  Tak-Keung LIANG  Yang LIU  Hon K. TSANG  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    156-166

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas--microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  • Low Power Gated Clock Tree Driven Placement

    Weixiang SHEN  Yici CAI  Xianlong HONG  Jiang HU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:2
      Page(s):
    595-603

    As power consumption of the clock tree dominates over 40% of the total power in modern high performance VLSI designs, measures must be taken to keep it under control. One of the most effective methods is based on clock gating to shut off the clock when the modules are idle. However, previous works on gated clock tree power minimization are mostly focused on clock routing and the improvements are often limited by the given registers placement. The purpose of this work is to navigate the registers during placement to further reduce the clock tree power based on clock gating. Our method performs activity-aware register clustering that reduces the clock tree power not only by clumping the registers into a smaller area, but also by pulling the registers with the similar activity patterns closely to shut off the clock more time for the resultant subtrees. In order to reduce the impact of signal nets wirelength and power due to register clustering, we apply the timing and activity based net weighting in [14], which reduces the nets switching power by assigning a combination of activity and timing weights to the nets with higher switching rates or more critical timing. To tradeoff the power dissipated by the clock tree and the control signal, we extend the idea of local ungating in [6] and propose an algorithm of gate control signal optimization, which still sets the gate enable signal high if a register is active for a number of consecutive clock cycles. Experimental results on a set of MCNC benchmarks show that our approach is able to reduce the power and total wirelength of clock tree greatly with minimal overheads.

  • 1.2 V, 24 mW/ch, 10 bit, 80 MSample/s Pipelined A/D Converters

    Takeshi UENO  Tomohiko ITO  Daisuke KUROSE  Takafumi YAMAJI  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    454-460

    This paper describes 10-bit, 80-MSample/s pipelined A/D converters for wireless-communication terminals. To reduce power consumption, we employed the I/Q amplifier sharing technique [1] in which an amplifier is used for both I and Q channels. In addition, common-source, pseudo-differential (PD) amplifiers are used in all the conversion stages for further power reduction. Common-mode disturbances are removed by the proposed common-mode feedforward (CMFF) technique without using fully differential (FD) amplifiers. The converter was implemented in a 90-nm CMOS technology, and it consumes only 24 mW/ch from a 1.2-V power supply. The measured SNR and SNDR are 58.6 dB and 52.2 dB, respectively.

  • An Edge-Preserving Super-Precision for Simultaneous Enhancement of Spacial and Grayscale Resolutions

    Hiroshi HASEGAWA  Toshinori OHTSUKA  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Image

      Vol:
    E91-A No:2
      Page(s):
    673-681

    In this paper, we propose a method that recovers a smooth high-resolution image from several blurred and roughly quantized low-resolution images. For compensation of the quantization effect we introduce measurements of smoothness, Huber function that is originally used for suppression of block noises in a JPEG compressed image [Schultz & Stevenson '94] and a smoothed version of total variation. With a simple operator that approximates the convex projection onto constraint set defined for each quantized image [Hasegawa et al. '05], we propose a method that minimizes these cost functions, which are smooth convex functions, over the intersection of all constraint sets, i.e. the set of all images satisfying all quantization constraints simultaneously, by using hybrid steepest descent method [Yamada & Ogura '04]. Finally in the numerical example we compare images derived by the proposed method, Projections Onto Convex Sets (POCS) based conventinal method, and generalized proposed method minimizing energy of output of Laplacian.

  • Proposal of Receive Antenna Selection Methods for MIMO-OFDM System

    Quoc Tuan TRAN  Shinsuke HARA  Kriangsak SIVASONDHIVAT  Jun-ichi TAKADA  Atsushi HONDA  Yuuta NAKAYA  Kaoru YOKOO  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    505-517

    The combination of Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) technologies gives wireless communications systems the advantages of lower bit error rate (BER) and higher data rate in frequency-selective fading environments. However, the main drawbacks of MIMO systems are their high complexity and high cost. Therefore, antenna selection in MIMO systems has been shown to be an effective way to overcome the drawbacks. In this paper, we propose two receive antenna selection methods for a MIMO-OFDM system with radio frequency (RF) switches and polarization antenna elements at the receiver side, taking into consideration low computational complexity. The first method selects a set of polarization antenna elements which gives lower correlation between received signals and larger received signal power, thus achieves a lower BER with low computational complexity. The second method first selects a set of polarization antenna elements based on the criterion of the first method and another set of polarization antenna elements based on the criterion of minimizing the correlation between the received signals; it then calculates the signal-to-interference-plus-noise power ratio (SINR) of the two sets and selects a set with larger SINR. As a result, the second method achieves a better BER than the first one but it also requires higher computational complexity than the first one. We use the measured channel data to evaluate the performance of the two methods and show that they work effectively for the realistic channel.

  • Improved Approximation Algorithms for Item Pricing with Bounded Degree and Valuation

    Ryoso HAMANE  Toshiya ITOH  

     
    PAPER-Approximation Algorithms

      Vol:
    E91-D No:2
      Page(s):
    187-199

    When a store sells items to customers, the store wishes to decide the prices of the items to maximize its profit. If the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. It would be hard for the store to decide the prices of items. Assume that a store has a set V of n items and there is a set C of m customers who wish to buy those items. The goal of the store is to decide the price of each item to maximize its profit. We refer to this maximization problem as an item pricing problem. We classify the item pricing problems according to how many items the store can sell or how the customers valuate the items. If the store can sell every item i with unlimited (resp. limited) amount, we refer to this as unlimited supply (resp. limited supply). We say that the item pricing problem is single-minded if each customer j ∈ C wishes to buy a set ej ⊆ V of items and assigns valuation w(ej) ≥ 0. For the single-minded item pricing problems (in unlimited supply), Balcan and Blum regarded them as weighted k-hypergraphs and gave several approximation algorithms. In this paper, we focus on the (pseudo) degree of k-hypergraphs and the valuation ratio, i.e., the ratio between the smallest and the largest valuations. Then for the single-minded item pricing problems (in unlimited supply), we show improved approximation algorithms (for k-hypergraphs, general graphs, bipartite graphs, etc.) with respect to the maximum (pseudo) degree and the valuation ratio.

  • Inferring Pedigree Graphs from Genetic Distances

    Takeyuki TAMURA  Hiro ITO  

     
    PAPER-Graph Algorithms

      Vol:
    E91-D No:2
      Page(s):
    162-169

    In this paper, we study a problem of inferring blood relationships which satisfy a given matrix of genetic distances between all pairs of n nodes. Blood relationships are represented by our proposed graph class, which is called a pedigree graph. A pedigree graph is a directed acyclic graph in which the maximum indegree is at most two. We show that the number of pedigree graphs which satisfy the condition of given genetic distances may be exponential, but they can be represented by one directed acyclic graph with n nodes. Moreover, an O(n3) time algorithm which solves the problem is also given. Although phylogenetic trees and phylogenetic networks are similar data structures to pedigree graphs, it seems that inferring methods for phylogenetic trees and networks cannot be applied to infer pedigree graphs since nodes of phylogenetic trees and networks represent species whereas nodes of pedigree graphs represent individuals. We also show an O(n2) time algorithm which detects a contradiction between a given pedigree graph and distance matrix of genetic distances.

  • Learning of Finite Unions of Tree Patterns with Internal Structured Variables from Queries

    Satoshi MATSUMOTO  Takayoshi SHOUDAI  Tomoyuki UCHIDA  Tetsuhiro MIYAHARA  Yusuke SUZUKI  

     
    PAPER-Algorithmic Learning Theory

      Vol:
    E91-D No:2
      Page(s):
    222-230

    A linear term tree is defined as an edge-labeled rooted tree pattern with ordered children and internal structured variables whose labels are mutually distinct. A variable can be replaced with arbitrary edge-labeled rooted ordered trees. We consider the polynomial time learnability of finite unions of linear term trees in the exact learning model formalized by Angluin. The language L(t) of a linear term tree t is the set of all trees obtained from t by substituting arbitrary edge-labeled rooted ordered trees for all variables in t. Moreover, for a finite set S of linear term trees, we define L(S)=∪t∈S L(t). A target of learning, denoted by T*, is a finite set of linear term trees, where the number of edge labels is infinite. In this paper, for any set T* of m linear term trees (m ≥ 0), we present a query learning algorithm which exactly identifies T* in polynomial time using at most 2mn2 Restricted Subset queries and at most m+1 Equivalence queries, where n is the maximum size of counterexamples. Finally, we note that finite sets of linear term trees are not learnable in polynomial time using Restricted Equivalence, Membership and Subset queries.

  • The Optimization of In-Memory Space Partitioning Trees for Cache Utilization

    Myung Ho YEO  Young Soo MIN  Kyoung Soo BOK  Jae Soo YOO  

     
    PAPER-Database

      Vol:
    E91-D No:2
      Page(s):
    243-250

    In this paper, a novel cache conscious indexing technique based on space partitioning trees is proposed. Many researchers investigated efficient cache conscious indexing techniques which improve retrieval performance of in-memory database management system recently. However, most studies considered data partitioning and targeted fast information retrieval. Existing data partitioning-based index structures significantly degrade performance due to the redundant accesses of overlapped spaces. Specially, R-tree-based index structures suffer from the propagation of MBR (Minimum Bounding Rectangle) information by updating data frequently. In this paper, we propose an in-memory space partitioning index structure for optimal cache utilization. The proposed index structure is compared with the existing index structures in terms of update performance, insertion performance and cache-utilization rate in a variety of environments. The results demonstrate that the proposed index structure offers better performance than existing index structures.

  • Energy-Efficient Transmission Scheme for WPANs with a TDMA-Based Contention-Free Access Protocol

    Yang-Ick JOO  Yeonwoo LEE  

     
    LETTER-Network

      Vol:
    E91-B No:2
      Page(s):
    609-612

    Energy-efficient transmission scheme is very essential for Wireless Personal Area Networks (WPNs) for maximizing the lifetime of energy-constrained wireless devices and assuring the required QoS in the actual physical transmission at each allocated TDMA time slot. We therefore propose the minimum energy (ME) criterion based adaptive transmission scheme which determines the optimum combination of transmit power, physical data rate and fragment size required to simultaneously minimize the energy consumption and satisfy the required QoS in each assigned time duration. The improved performances offered by the proposed algorithm are demonstrated via computer simulation in terms of throughput and energy consumption.

  • Applications of Optical Image Processing Technique for Steel Mill Non-contacting Conveyance System Operations

    Cheng-Tsung LIU  Yung-Yi YANG  Sheng-Yang LIN  

     
    PAPER-Optoelectronics

      Vol:
    E91-C No:2
      Page(s):
    187-192

    This paper is aimed to present the design and feasibility investigations of adopting the available on-site optical inspection system, which is commonly used for steel plate dimension measurement, to supply on-line dynamic gap measurements of a non-contacting conveyance structure in a steel mill. Adequate software and hardware implementations based on digital image processing techniques have been adapted to the entire system formulations and estimations. Results show that the system can supply accurate and rapid gap measurements and thus can fulfill the design and operational objectives.

  • IVs to Skip for Immunizing WEP against FMS Attack

    Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E91-B No:1
      Page(s):
    164-171

    The WEP (Wired Equivalent Privacy) is a part of IEEE 802.11 standard designed for protecting over-the-air communication. While almost all of the WLAN (Wireless LAN) cards and the APs (Access Points) support WEP, a serious key recovery attack (aka FMS attack) was identified by Fluhrer et al. The FMS attack can basically be prevented by skipping IVs (Initial Values) used in the attack, but naive skip methods reveal information on the WEP key since most of them depend on the WEP key and the patterns of the skipped IV reveal it. In order to skip IVs safely, the skip patterns must be chosen carefully. In this paper, we review the attack conditions (6) and (7), whose success probability is the highest, 0.05, amongst all known conditions to guess one key-byte from one packet. Then we identify their safe skip patterns.

  • GDME: Grey Relational Clustering Applied to a Clock Tree Construction with Zero Skew and Minimal Delay

    Chia-Chun TSAI  Jan-Ou WU  Trong-Yen LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:1
      Page(s):
    365-374

    This study has demonstrated that the clock tree construction in an SoC should be expanded to consider the intrinsic delay and skew of each IP's clock sink. A novel algorithm, called GDME, is proposed to combine grey relational clustering and DME approach for solving the problem of clock tree construction. Grey relational analysis can cluster the best pair of clock sinks and that guide a tapping point search for a DME algorithm for constructing a clock tree with zero skew and minimal delay. Experimentally, the proposed algorithm always obtains an RC- or RLC-based clock tree with zero skew and minimal delay for all the test cases and benchmarks. Experimental results demonstrate that the GDME improves up to 3.74% for total average in terms of total wire length compared with other DME algorithms. Furthermore, our results for the zero-skew RLC-based clock trees compared with Hspice are 0.017% and 0.2% lower for absolute average in terms of skew and delay, respectively.

  • A CMOS Smart Thermal Sensor for Biomedical Application

    Ho-Yin LEE  Shih-Lun CHEN  Ching-Hsing LUO  

     
    PAPER-Organic Molecular Electronics

      Vol:
    E91-C No:1
      Page(s):
    96-104

    This paper describes a smart thermal sensing chip with an integrated vertical bipolar transistor sensor, a Sigma Delta Modulator (SDM), a Micro-Control Unit (MCU), and a bandgap reference voltage generator for biomedical application by using 0.18 µm CMOS process. The npn bipolar transistors with the Deep N-Well (DNW) instead of the pnp bipolar transistor is first adopted as the sensor for good isolation from substrate coupling noise. In addition to data compression, Micro-Control Unit (MCU) plays an important role for executing auto-calibration by digitally trimming the bipolar sensor in parallel to save power consumption and to reduce feedback complexity. It is different from the present analog feedback calibration technologies. Using one sensor, instead of two sensors, to create two differential signals in 180phase difference input to SDM is also a novel design of this work. As a result, in the range of 0 to 80 or body temperature (375), the inaccuracy is less than 0.1 or 0.05 respectively with one-point calibration after packaging. The average power consumption is 268.4 µW with 1.8 V supply voltage.

  • Introduction to IEEE P1900.4 Activities Open Access

    Soodesh BULJORE  Markus MUCK  Patricia MARTIGNE  Paul HOUZE  Hiroshi HARADA  Kentaro ISHIZU  Oliver HOLLAND  Andrej MIHAILOVIC  Kostas A. TSAGKARIS  Oriol SALLENT  Gary CLEMO  Mahesh SOORIYABANDARA  Vladimir IVANOV  Klaus NOLTE  Makis STAMETALOS  

     
    INVITED PAPER

      Vol:
    E91-B No:1
      Page(s):
    2-9

    The Project Authorization Request (PAR) for the IEEE P1900.4 Working Group (WG), under the IEEE Standards Coordinating Committee 41 (SCC41) was approved in December 2006, leading to this WG being officially launched in February 2007 [1]. The scope of this standard is to devise a functional architecture comprising building blocks to enable coordinated network-device distributed decision making, with the goal of aiding the optimization of radio resource usage, including spectrum access control, in heterogeneous wireless access networks. This paper introduces the activities and work under progress in IEEE P1900.4, including its scope and purpose in Sects. 1 and 2, the reference usage scenarios where the standard would be applicable in Sect. 4, and its current system architecture in Sect. 5.

  • Collision Resistance of Double-Block-Length Hash Function against Free-Start Attack

    Shoichi HIROSE  

     
    PAPER-Hash Functions

      Vol:
    E91-A No:1
      Page(s):
    74-82

    In this article, we discuss the security of double-block-length (DBL) hash functions against the free-start collision attack. We focus on the DBL hash functions composed of compression functions of the form F(x) = (f(x), f(p(x))), where f is a smaller compression function and p is a permutation. We first show, in the random oracle model, that a significantly good upper bound can be obtained on the success probability of the free-start collision attack with sufficient conditions on p and the set of initial values. We also show that a similar upper bound can be obtained in the ideal cipher model if f is composed of a block cipher.

  • Blind CMA-Based Asynchronous Multiuser Detection Using Generalized Sidelobe Canceller with Decision Feedback

    Ann-Chen CHANG  Chih-Wei JEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    376-380

    This letter deals with blind multiuser detection based on the multi-channel linearly constrained constant modulus algorithm (MLCCMA) for asynchronous code division multiple access (CDMA) systems over frequency-selective Rayleigh fading channels. In conjunction with the decision-feedback generalized sidelobe canceller (DFGSC), we present an efficient approach to combat multiple access interference and intersymbol interference. Computer simulations confirm that the proposed MLCCMA-based DFGSC can significantly speed up convergence and improve the output performance.

  • Provably Secure Multisignatures in Formal Security Model and Their Optimality

    Yuichi KOMANO  Kazuo OHTA  Atsushi SHIMBO  Shinichi KAWAMURA  

     
    PAPER-Signatures

      Vol:
    E91-A No:1
      Page(s):
    107-118

    We first model the formal security model of multisignature scheme following that of group signature scheme. Second, we prove that the following three probabilistic multisignature schemes based on a trapdoor permutation have tight security; PFDH (probabilistic full domain hash) based multisignature scheme (PFDH-MSS), PSS (probabilistic signature scheme) based multisignature scheme (PSS-MSS), and short signature PSS based multisignature scheme (S-PSS-MSS). Third, we give an optimal proof (general result) for multisignature schemes, which derives the lower bound for the length of random salt. We also estimate the upper bound for the length in each scheme and derive the optimal length of a random salt. Two of the schemes are promising in terms of security tightness and optimal signature length. In appendix, we describe a multisignature scheme using the claw-free permutation and discuss its security.

  • Adaptive Power Control MAC in Wireless Ad Hoc Networks

    Hong-Seok CHOI  Hee-Jung BYUN  Jong-Tae LIM  

     
    LETTER-Network

      Vol:
    E91-B No:1
      Page(s):
    309-313

    In this letter, we suggest APMAC (Adaptive Power Control MAC) for wireless ad hoc networks. APMAC is based on the single channel environment and improves the throughput and the energy efficiency simultaneously. Furthermore, the APMAC prevents the unfair channel starvation among the transmission pairs. We verify the performance of the APMAC through simulations.

  • Performance Analysis of the Extended Low Complexity User Scheduling Algorithm over Up-Link Multi-User MIMO OFDMA Systems

    Junyi WANG  Yuyuan CHANG  Chuyu ZHENG  Kiyomichi ARAKI  ZhongZhao ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    327-329

    The low complexity tree-structure based user scheduling algorithm is extended into up-link MLD-based multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing access (OFDMA) wireless systems. The system sum capacity is maximized by careful user selection on a defined tree structure. The calculation load is reduced by selecting the M most possible best branches and sampling in frequency dimension. The performances of the proposed scheduling algorithm are analyzed within three kinds of OFDMA systems and compared with conventional throughput-based algorithm. Both the theoretical analysis and simulation results show that the proposed algorithm obtains better performance with much low complexity.

2181-2200hit(4073hit)