The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4079hit)

1321-1340hit(4079hit)

  • Admissible Stopping in Viterbi Beam Search for Unit Selection Speech Synthesis

    Shinsuke SAKAI  Tatsuya KAWAHARA  

     
    PAPER-Speech and Hearing

      Vol:
    E96-D No:6
      Page(s):
    1359-1367

    Corpus-based concatenative speech synthesis has been widely investigated and deployed in recent years since it provides a highly natural synthesized speech quality. The amount of computation required in the run time, however, can often be quite large. In this paper, we propose early stopping schemes for Viterbi beam search in the unit selection, with which we can stop early in the local Viterbi minimization for each unit as well as in the exploration of candidate units for a given target. It takes advantage of the fact that the space of the acoustic parameters of the database units is fixed and certain lower bounds of the concatenation costs can be precomputed. The proposed method for early stopping is admissible in that it does not change the result of the Viterbi beam search. Experiments using probability-based concatenation costs as well as distance-based costs show that the proposed methods of admissible stopping effectively reduce the amount of computation required in the Viterbi beam search while keeping its result unchanged. Furthermore, the reduction effect of computation turned out to be much larger if the available lower bound for concatenation costs is tighter.

  • Object Detection Using RSSI with Road Surface Reflection Model for Intersection Safety

    Shoma HISAKA  Shunsuke KAMIJO  

     
    PAPER-Intelligent Transport System

      Vol:
    E96-A No:6
      Page(s):
    1451-1459

    We have developed a dedicated onboard “sensor” utilizing wireless communication devices for collision avoidance around road intersections. The “sensor” estimates the positions of transmitters on traffic participants by comparing the strengths of signals received by four ZigBee receivers installed at the four corners of a vehicle. On-board sensors involving cameras cannot detect objects in non line-of-sight (NLOS) area caused by buildings and other vehicles. Although infrastructure sensors for vehicle-to-infrastructure (V2I) cooperative systems can detect such hidden objects, they are substantially more expensive than on-board sensors. The on-board wireless “sensor” developed in this work would function as an alternative tool for collision avoidance around intersections. Herein, we extend our previous work by considering a road surface reflection model to improve the estimation accuracy. By using this model, we succeeded in reducing the error mismatches between the observed data and the calibration data of the estimation algorithm. The proposed system will be realized on the basis of these enhancements.

  • A Linear-Time Algorithm for Constructing a Spanning Tree on Circular Trapezoid Graphs

    Hirotoshi HONMA  Yoko NAKAJIMA  Haruka AOSHIMA  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1051-1058

    Given a simple connected graph G with n vertices, the spanning tree problem involves finding a tree that connects all the vertices of G. Solutions to this problem have applications in electrical power provision, computer network design, circuit analysis, among others. It is known that highly efficient sequential or parallel algorithms can be developed by restricting classes of graphs. Circular trapezoid graphs are proper superclasses of trapezoid graphs. In this paper, we propose an O(n) time algorithm for the spanning tree problem on a circular trapezoid graph. Moreover, this algorithm can be implemented in O(log n) time with O(n/log n) processors on EREW PRAM computation model.

  • A Reduced-Complexity Heterodyne Multiband MIMO Receiver with Estimation of Analog Devices Imperfection in a Baseband Feedback Loop

    Tomoya OHTA  Satoshi DENNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1540-1550

    This paper proposes a reduced-complexity multiband multiple-input multiple-output (MIMO) receiver that can be used in cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage. When an RF Hilbert transformer is utilized in the receiver, image-band interference occurs because of the transformer's imperfections. Thus, the imperfection of the Hilbert transformer is corrected in the intermediate frequency (IF) stage to reduce the hardware complexity. First, the proposed receiver estimates the channel impulse response in the presence of the strong image-band interference signals. Next, the coefficients are calculated for the correction of the imperfection at the IF stage, and are fed back to the IF stage through a feedback loop. However, the imperfection caused by the digital-to-analog (D/A) converter and the baseband amplifier in the feedback loop corrupts the coefficients on the way back to the IF stage. Therefore, the proposed receiver corrects the imperfection of the analog devices in the feedback loop. The performance of the proposed receiver is verified by using computer simulations. The proposed receiver can maintain its performance even in the presence of strong image-band interference signals and imperfection of the analog devices in the feedback loop. In addition, this paper also reveals the condition for rapid convergence.

  • A Feed-Forward Time Amplifier Using a Phase Detector and Variable Delay Lines

    Kiichi NIITSU  Naohiro HARIGAI  Takahiro J. YAMAGUCHI  Haruo KOBAYASHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:6
      Page(s):
    920-922

    This paper describes a high-speed, robust, scalable, and low-cost feed-forward time amplifier that uses phase detectors and variable delay lines. The amplifier works by detecting the time difference between two rising input edges with a phase detector and adjusting the delay of the variable delay line accordingly. A test chip was designed and fabricated in 65 nm CMOS. The measured resulting performance indicates that it is possible to amplify time difference while maintaining high-speed operation.

  • Content-Aware Write Reduction Mechanism of 3D Stacked Phase-Change RAM Based Frame Store in H.264 Video Codec System

    Sanchuan GUO  Zhenyu LIU  Guohong LI  Takeshi IKENAGA  Dongsheng WANG  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1273-1282

    H.264 video codec system requires big capacity and high bandwidth of Frame Store (FS) for buffering reference frames. The up-to-date three dimensional (3D) stacked Phase change Random Access Memory (PRAM) is the promising approach for on-chip caching the reference signals, as 3D stacking offers high memory bandwidth, while PRAM possesses the advantages in terms of high density and low leakage power. However, the write endurance problem, that is a PRAM cell can only tolerant limited number of write operations, becomes the main barrier in practical applications. This paper studies the wear reduction techniques of PRAM based FS in H.264 codec system. On the basis of rate-distortion theory, the content oriented selective writing mechanisms are proposed to reduce bit updates in the reference frame buffers. With the proposed control parameter a, our methods make the quantitative trade off between the quality degradation and the PRAM lifetime prolongation. Specifically, taking a in the range of [0.2,2], experimental results demonstrate that, our methods averagely save 29.9–35.5% bit-wise write operations and reduce 52–57% power, at the cost of 12.95–20.57% BDBR bit-rate increase accordingly.

  • Speaker Adaptation in Sparse Subspace of Acoustic Models

    Yongwon JEONG  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:6
      Page(s):
    1402-1405

    I propose an acoustic model adaptation method using bases constructed through the sparse principal component analysis (SPCA) of acoustic models trained in a clean environment. I perform experiments on adaptation to a new speaker and noise. The SPCA-based method outperforms the PCA-based method in the presence of babble noise.

  • Ranking and Unranking of Non-regular Trees in Gray-Code Order

    Ro-Yu WU  Jou-Ming CHANG  An-Hang CHEN  Ming-Tat KO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1059-1065

    A non-regular tree T with a prescribed branching sequence (s1,s2,...,sn) is a rooted and ordered tree such that its internal nodes are numbered from 1 to n in preorder and every internal node i in T has si children. Recently, Wu et al. (2010) introduced a concise representation called RD-sequences to represent all non-regular trees and proposed a loopless algorithm for generating all non-regular trees in a Gray-code order. In this paper, based on such a Gray-code order, we present efficient ranking and unranking algorithms of non-regular trees with n internal nodes. Moreover, we show that the ranking algorithm and the unranking algorithm can be run in O(n2) time and O(n2+nSn-1) time, respectively, provided a preprocessing takes O(n2Sn-1) time and space in advance, where .

  • Adaptive Feedback Cancellation on Improved DCD Algorithms

    Chao DONG  Li GAO  Ying HONG  Chengpeng HAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E96-A No:6
      Page(s):
    1478-1481

    Dichotomous coordinate descent (DCD) iterations method has been proposed for adaptive feedback cancellation, which uses a fixed number of iterations and a fixed amplitude range. In this paper, improved DCD algorithms are proposed, which substitute the constant number of iterations and the amplitude range with a variable number of iterations(VI) and/or a variable amplitude range(VA). Thus VI-DCD, VA-DCD and VIA-DCD algorithms are obtained. Computer simulations are used to compare the performance of the proposed algorithms against original DCD algorithm, and simulation results demonstrate that significant improvements are achieved in the convergence speed and accuracy. Another notable conclusion by further simulations is that the proposed algorithms achieve superior performance with a real speech segment as the input.

  • Partitioning Trees with Supply, Demand and Edge-Capacity

    Masaki KAWABATA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1036-1043

    Let T be a given tree. Each vertex of T is either a supply vertex or a demand vertex, and is assigned a positive number, called the supply or demand. Each demand vertex v must be supplied an amount of “power,” equal to the demand of v, from exactly one supply vertex through edges in T. Each edge is assigned a positive number called the capacity. One wishes to partition T into subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of all demands in the subtree and the power flow through each edge is no more than capacity of the edge. The “partition problem” is a decision problem to ask whether T has such a partition. The “maximum partition problem” is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.

  • Game-Theoretic Analysis of Multibandwidth Channel Selection by Coordinated APs in WLANs

    Kohei HANADA  Koji YAMAMOTO  Masahiro MORIKURA  Koichi ISHIHARA  Riichi KUDO  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1277-1287

    As the demand for high-throughput communications in wireless LANs (WLAN) increases, the need for expanding channel bandwidth also increases. However, the use of wider band channels results in a decrease in the number of available channels because the total available bandwidth for WLAN is limited. Therefore, if multiple access points (APs) are in proximity and the cells overlap, it is difficult for each AP to use an orthogonal channel and competition increases between APs using the same channel. Coordination of APs is one promising approach; however, it is impractical to control all APs in WLAN systems. To cope with this problem, we proposed to analyze throughput performances of a multibandwidth channel selection by the coordinating APs at Nash equilibria, which can be considered as operating points for independent channel selection by APs. To clarify the effect of coordinating APs, we assume a simple scenario where the cells of three or more APs overlap, and each AP can select multibandwidth channels to maximize their own throughput. Through game-theoretic analysis, we find that the coordinated APs are able to select channels more effectively than if each AP independently selects channels. Consequently, the total throughput of the coordinated APs at Nash equilibria is significantly improved.

  • An Independent Sleep Scheduling Protocol for Increasing Energy-Efficiency in Wireless Body Area Networks

    Seungku KIM  Huan-Bang LI  Doo-Seop EOM  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    908-915

    This paper presents an independent sleep scheduling protocol for energy-efficient wireless body area networks. We designed the proposed protocol based on the IEEE 802.15.6 standard that is flexible to cover various application requirements for WBAN. The target of the proposed protocol is applications that generate aperiodic and intermittent traffic. Thus, the node providing these applications wakes up only when a new event occurs. We perform the numerical analysis and the simulation to compare the IEEE 802.15.6 without and with the independent sleep scheduling protocol. The results show that the proposed protocol increases energy-efficiency in case of large data size as well as long data occurrence interval.

  • Dynamic Fault Tree Analysis Using Bayesian Networks and Sequence Probabilities

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:5
      Page(s):
    953-962

    A method of calculating the exact top event probability of a fault tree with dynamic gates and repeated basic events is proposed. The top event probability of such a dynamic fault tree is obtained by converting the tree into an equivalent Markov model. However, the Markov-based method is not realistic for a complex system model because the number of states that should be considered in the Markov analysis increases explosively as the number of basic events in the model increases. To overcome this shortcoming, we propose an alternative method in this paper. It is a hybrid of a Bayesian network (BN) and an algebraic technique. First, modularization is applied to a dynamic fault tree. The detected modules are classified into two types: one satisfies the parental Markov condition and the other does not. The module without the parental Markov condition is replaced with an equivalent single event. The occurrence probability of this event is obtained as the sum of disjoint sequence probabilities. After the contraction of modules without parent Markov condition, the BN algorithm is applied to the dynamic fault tree. The conditional probability tables for dynamic gates are presented. The BN is a standard one and has hierarchical and modular features. Numerical example shows that our method works well for complex systems.

  • Generalized Feed Forward Shift Registers and Their Application to Secure Scan Design

    Katsuya FUJIWARA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E96-D No:5
      Page(s):
    1125-1133

    In this paper, we introduce generalized feed-forward shift registers (GF2SR) to apply them to secure and testable scan design. Previously, we introduced SR-equivalents and SR-quasi-equivalents which can be used in secure and testable scan design, and showed that inversion-inserted linear feed-forward shift registers (I2LF2SR) are useful circuits for the secure and testable scan design. GF2SR is an extension of I2LF2SR and the class is much wider than that of I2LF2SR. Since the cardinality of the class of GF2SR is much larger than that of I2LF2SR, the security level of scan design with GF2SR is much higher than that of I2LF2SR. We consider how to control/observe GF2SR to guarantee easy scan-in/out operations, i.e., state-justification and state-identification problems are considered. Both scan-in and scan-out operations can be overlapped in the same way as the conventional scan testing, and hence the test sequence for the proposed scan design is of the same length as the conventional scan design. A program called WAGSR (Web Application for Generalized feed-forward Shift Registers) is presented to solve those problems.

  • Distributed Power Control Network and Green Building Test-Bed for Demand Response in Smart Grid

    Kei SAKAGUCHI  Van Ky NGUYEN  Yu TAO  Gia Khanh TRAN  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    896-907

    It is known that demand and supply power balancing is an essential method to operate power delivery system and prevent blackouts caused by power shortage. In this paper, we focus on the implementation of demand response strategy to save power during peak hours by using Smart Grid. It is obviously impractical with centralized power control network to realize the real-time control performance, where a single central controller measures the huge metering data and sends control command back to all customers. For that purpose, we propose a new architecture of hierarchical distributed power control network which is scalable regardless of the network size. The sub-controllers are introduced to partition the large system into smaller distributed clusters where low-latency local feedback power control loops are conducted to guarantee control stability. Furthermore, sub-controllers are stacked up in an hierarchical manner such that data are fed back layer-by-layer in the inbound while in the outbound control responses are decentralized in each local sub-controller for realizing the global objectives. Numerical simulations in a realistic scenario of up to 5000 consumers show the effectiveness of the proposed scheme to achieve a desired 10% peak power saving by using off-the-shelf wireless devices with IEEE802.15.4g standard. In addition, a small-scale power control system for green building test-bed is implemented to demonstrate the potential use of the proposed scheme for power saving in real life.

  • Impact of the Reduction of Transmitted Information on the Control Quality in a Wireless Feedback Control System

    Ryota MIZUTANI  Kentaro KOBAYASHI  Hiraku OKADA  Masaaki KATAYAMA  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    869-877

    This paper discusses the reduction of the amount of transmitted information for the efficient use of frequency resources in wireless feedback control systems, and clarify the effect of the reduction of the amount of transmitted information. As a typical example of the underactuated controlled object, a rotary inverted pendulum is considered. We propose a reduction method for state information fed back from the controller to the controlled object. It estimates angle or velocity state from the previous state. In addition, we propose a reduction method that temporally omits less important control information and state information. Numerical examples clarify the effect of the reduction methods on the control quality. And we show that the reduction methods achieve large reduction of the amount of transmitted information with small disadvantage of the control quality.

  • Energy-Efficient Cooperative Spectrum Sensing with QoS Guarantee in Cognitive Radio Networks

    Hang HU  Youyun XU  Ning LI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:5
      Page(s):
    1222-1225

    A novel and energy-efficient algorithm with Quality-of-Service (QoS) guarantee is proposed for cooperative spectrum sensing (CSS) with soft information fusion and hard information fusion. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of secondary users (SUs), it is shown that the optimal number of SUs is related to the price of these QoS requirements.

  • A High Performance Current Latch Sense Amplifier with Vertical MOSFET

    Hyoungjun NA  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    655-662

    In this paper, a high performance current latch sense amplifier (CLSA) with vertical MOSFET is proposed, and its performances are investigated. The proposed CLSA with the vertical MOSFET realizes a 11% faster sensing time with about 3% smaller current consumption relative to the conventional CLSA with the planar MOSFET. Moreover, the proposed CLSA with the vertical MOSFET achieves an 1.11 dB increased voltage gain G(f) relative to the conventional CLSA with the planar MOSFET. Furthermore, the proposed CLSA realizes up to about 1.7% larger yield than the conventional CLSA, and its circuit area is 42% smaller than the conventional CLSA.

  • Fabrication of β-FeSi2 Films on Si(111) Using Solid-Phase Growth Reaction from Fe and FeSi Sources

    Katsuaki MOMIYAMA  Kensaku KANOMATA  Shigeru KUBOTA  Fumihiko HIROSE  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    690-693

    We investigated solid-phase growth reactions for the fabrication of β-FeSi2 films from Fe and FeSi sources by reflection high-energy electron diffraction (RHEED). To enhance the interdiffusion of Fe and Si for the growth of β-FeSi2, the use of FeSi instead of pure Fe as the source for the initial deposition was examined. The RHEED observation during the solid phase reaction indicated that the growth temperature was markedly decreased to 390 K using the FeSi source. We discuss the reaction mechanism of the solid phase growth of β-FeSi2 from Fe and FeSi sources in this paper.

  • L-Shaped Tunneling Field-Effect Transistors for Complementary Logic Applications

    Sang Wan KIM  Woo Young CHOI  Min-Chul SUN  Hyun Woo KIM  Jong-Ho LEE  Hyungcheol SHIN  Byung-Gook PARK  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    634-638

    In order to implement complementary logic function with L-shaped tunneling field-effect transistors (TFETs), current drivability and subthreshold swing (SS) need to be improved more. For this purpose, high-k material such as hafnium dioxide (HfO2) has been used as gate dielectric rather than silicon dioxide (SiO2). The effects of device parameters on performance have been investigated and the design of L-shaped TFETs has been optimized. Finally, the performance of L-shaped TFET inverters have been compared with that of conventional TFET ones.

1321-1340hit(4079hit)