The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4079hit)

1301-1320hit(4079hit)

  • Degrees of Freedom of the MIMO K-way Relay Channel with Fractional Signal Space Alignment

    Bofeng YUAN  Xuewen LIAO  Xinmin LUO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2281-2292

    The multiple-input-multiple-output (MIMO) Gaussian wireless network with K users and an intermediate relay is investigated. In this network, each user with available local channel state information (CSI) intends to convey a multicast message to all other users while receiving all messages from other users via the relay. This model is termed the MIMO K-way relay channel with distributed CSI. For this channel, the sum capacity is shown as MK/(K-1)log(SNR)+o(SNR) where each user and the relay is equipped with M antennas. Achievability is based on the signal space alignment strategy with a K-1 time slot extension. A most general case is then considered, in which each user intends to recover all messages required within T time slots. We provide an improved scheme called fractional signal space alignment which achieves MK/(K-1) degrees of freedom in the general case and the feasibility condition is also explored.

  • Time-Delayed Collaborative Routing and MAC Protocol for Maximizing the Network Lifetime in MANETs

    Woncheol CHO  Daeyoung KIM  

     
    PAPER-Network

      Vol:
    E96-B No:9
      Page(s):
    2213-2223

    This paper proposes T-CROM (Time-delayed Collaborative ROuting and MAC) protocol, that allows collaboration between network and MAC layers in order to extend the lifetime of MANETs in a resources-limited environment. T-CROM increases the probability of preventing energy-poor nodes from joining routes by using a time delay function that is inversely proportional to the residual battery capacity of intermediate nodes, making a delay in the route request (RREQ) packets transmission. The route along which the first-arrived RREQ packet traveled has the smallest time delay, and thus the destination node identifies the route with the maximum residual battery capacity. This protocol leads to a high probability of avoiding energy-poor nodes and promotes energy-rich nodes to join routes in the route establishment phase. In addition, T-CROM controls the congestion between neighbors and reduces the energy dissipation by providing an energy-efficient backoff time by considering both the residual battery capacity of the host itself and the total number of neighbor nodes. The energy-rich node with few neighbors has a short backoff time, and the energy-poor node with many neighbors gets assigned a large backoff time. Thus, T-CROM controls the channel access priority of each node in order to prohibit the energy-poor nodes from contending with the energy-rich nodes. T-CROM fairly distributes the energy consumption of each node, and thus extends the network lifetime collaboratively. Simulation results show that T-CROM reduces the number of total collisions, extends the network lifetime, decreases the energy consumption, and increases the packet delivery ratio, compared with AOMDV with IEEE 802.11 DCF and BLAM, a battery-aware energy efficient MAC protocol.

  • A Current-Mirror Winner-Take-All Sense Amplifier for Low Voltage SRAMs

    Song JIA  Heqing XU  Fengfeng WU  Yuan WANG  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E96-C No:9
      Page(s):
    1205-1207

    We propose a current mode sense amplifier that uses a current-mirror to increase the bitline sensing current, which dominates the sensing speed. A comparison of the sensing delay shows that the proposed sense amplifier can provide about 12.6∼15.4% improvement depending on different bitline loads in sensing speed over original WTA scheme.

  • A Capture-Safety Checking Metric Based on Transition-Time-Relation for At-Speed Scan Testing

    Kohei MIYASE  Ryota SAKAI  Xiaoqing WEN  Masao ASO  Hiroshi FURUKAWA  Yuta YAMATO  Seiji KAJIHARA  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    2003-2011

    Test power has become a critical issue, especially for low-power devices with deeply optimized functional power profiles. Particularly, excessive capture power in at-speed scan testing may cause timing failures that result in test-induced yield loss. This has made capture-safety checking mandatory for test vectors. However, previous capture-safety checking metrics suffer from inadequate accuracy since they ignore the time relations among different transitions caused by a test vector in a circuit. This paper presents a novel metric called the Transition-Time-Relation-based (TTR) metric which takes transition time relations into consideration in capture-safety checking. Detailed analysis done on an industrial circuit has demonstrated the advantages of the TTR metric. Capture-safety checking with the TTR metric greatly improves the accuracy of test vector sign-off and low-capture-power test generation.

  • Design and Measurement of the Plate Laminated Waveguide Slot Array Antenna and Its Feasibility for Wireless Link System in the 120 GHz Band

    Dongjin KIM  Jiro HIROKAWA  Kimio SAKURAI  Makoto ANDO  Takuma TAKADA  Tadao NAGATSUMA  Jun TAKEUCHI  Akihiko HIRATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:8
      Page(s):
    2102-2111

    We design and fabricate a double-layer hollow-waveguide slot array antenna with wide bandwidth and high antenna efficiency for the 120 GHz band. The antenna is fabricated by diffusion bonding of laminated thin metal plates for high precision and perfect electrical contact. The 1616-element antenna shows more than 70% antenna efficiency over a 13 GHz bandwidth. Furthermore, it realizes error-free data transmission in 2.5 m distance at up to 10 Gbit/s. To our knowledge, this is the first report of the design and fabrication of a high-efficiency wideband planar antenna for the 120 GHz band.

  • Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems Based on Stochastic Control Lyapunov Functions

    Yuki NISHIMURA  Kanya TANAKA  Yuji WAKASA  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:8
      Page(s):
    1695-1702

    In this paper, a stochastic asymptotic stabilization method is proposed for deterministic input-affine control systems, which are randomized by including Gaussian white noises in control inputs. The sufficient condition is derived for the diffusion coefficients so that there exist stochastic control Lyapunov functions for the systems. To illustrate the usefulness of the sufficient condition, the authors propose the stochastic continuous feedback law, which makes the origin of the Brockett integrator become globally asymptotically stable in probability.

  • Dynamic Fault Tree Analysis for Systems with Nonexponential Failure Components

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:8
      Page(s):
    1730-1736

    A method of calculating the top event probability of a fault tree, where dynamic gates and repeated events are included and the occurrences of basic events follow nonexponential distributions, is proposed. The method is on the basis of the Bayesian network formulation for a DFT proposed by Yuge and Yanagi [1]. The formulation had a difficulty in calculating a sequence probability if components have nonexponential failure distributions. We propose an alternative method to obtain the sequence probability in this paper. First, a method in the case of the Erlang distribution is discussed. Then, Tijms's fitting procedure is applied to deal with a general distribution. The procedure gives a mixture of two Erlang distributions as an approximate distribution for a general distribution given the mean and standard deviation. A numerical example shows that our method works well for complex systems.

  • 1.5–9.7-Gb/s Complete 4-PAM Serial Link Transceiver with a Wide Frequency Range CDR

    Bongsub SONG  Kyunghoon KIM  Junan LEE  Kwangsoo KIM  Younglok KIM  Jinwook BURM  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:8
      Page(s):
    1048-1053

    A complete 4-level pulse amplitude modulation (4-PAM) serial link transceiver including a wide frequency range clock generator and clock data recovery (CDR) is proposed in this paper. A dual-loop architecture, consisting of a frequency locked loop (FLL) and a phase locked loop (PLL), is employed for the wide frequency range clocks. The generated clocks from the FLL (clock generator) and the PLL (CDR) are utilized for a transmitter clock and a receiver clock, respectively. Both FLL and PLL employ the identical voltage controlled oscillators consisting of ring-type delay-cells. To improve the frequency tuning range of the VCO, deep triode PMOS loads are utilized for each delay-cell, since the turn-on resistance of the deep triode PMOS varies substantially by the gate-voltage. As a result, fabricated in a 0.13-µm CMOS process, the proposed 4-PAM transceiver operates from 1.5 Gb/s to 9.7 Gb/s with a bit error rate of 10-12. At the maximum data-rate, the entire power dissipation of the transceiver is 254 mW, and the measured jitter of the recovered clock is 1.61 psrms.

  • Spectral Subtraction Based on Non-extensive Statistics for Speech Recognition

    Hilman PARDEDE  Koji IWANO  Koichi SHINODA  

     
    PAPER-Speech and Hearing

      Vol:
    E96-D No:8
      Page(s):
    1774-1782

    Spectral subtraction (SS) is an additive noise removal method which is derived in an extensive framework. In spectral subtraction, it is assumed that speech and noise spectra follow Gaussian distributions and are independent with each other. Hence, noisy speech also follows a Gaussian distribution. Spectral subtraction formula is obtained by maximizing the likelihood of noisy speech distribution with respect to its variance. However, it is well known that noisy speech observed in real situations often follows a heavy-tailed distribution, not a Gaussian distribution. In this paper, we introduce a q-Gaussian distribution in the non-extensive statistics to represent the distribution of noisy speech and derive a new spectral subtraction method based on it. We found that the q-Gaussian distribution fits the noisy speech distribution better than the Gaussian distribution does. Our speech recognition experiments using the Aurora-2 database showed that the proposed method, q-spectral subtraction (q-SS), outperformed the conventional SS method.

  • A Multiple-Valued Reconfigurable VLSI Architecture Using Binary-Controlled Differential-Pair Circuits

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Integrated Electronics

      Vol:
    E96-C No:8
      Page(s):
    1083-1093

    This paper presents a fine-grain bit-serial reconfigurable VLSI architecture using multiple-valued switch blocks and binary logic modules. Multiple-valued signaling is utilized to implement a compact switch block. A binary-controlled current-steering technique is introduced, utilizing a programmable three-level differential-pair circuit to implement a high-performance low-power arbitrary two-variable binary function, and increase the noise margins in comparison with the quaternary-controlled differential-pair circuit. A current-source sharing technique between a series-gating differential-pair circuit and a current-mode D-latch is proposed to reduce the current source count and improve the speed. It is demonstrated that the power consumption and the delay of the proposed multiple-valued cell based on the binary-controlled current-steering technique and the current-source-sharing technique are reduced to 63% and 72%, respectively, in comparison with those of a previous multiple-valued cell.

  • List Decoding of Reed-Muller Codes Based on a Generalized Plotkin Construction

    Kenji YASUNAGA  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:7
      Page(s):
    1662-1666

    Gopalan, Klivans, and Zuckerman proposed a list-decoding algorithm for Reed-Muller codes. Their algorithm works up to a given list-decoding radius. Dumer, Kabatiansky, and Tavernier improved the complexity of the algorithm for binary Reed-Muller codes by using the well-known Plotkin construction. In this study, we propose a list-decoding algorithm for non-binary Reed-Muller codes as a generalization of Dumer et al.'s algorithm. Our algorithm is based on a generalized Plotkin construction, and is more suitable for parallel computation than the algorithm of Gopalan et al. Since the list-decoding algorithms of Gopalan et al., Dumer et al., and ours can be applied to more general codes than Reed-Muller codes, we give a condition for codes under which these list-decoding algorithms works.

  • A 36-mW 1.5-GS/s 7-Bit Time-Interleaved SAR ADC Using Source Follower Based Track-and-Hold Circuit in 65-nm CMOS

    Masanori FURUTA  Ippei AKITA  Junya MATSUNO  Tetsuro ITAKURA  

     
    PAPER-Analog Signal Processing

      Vol:
    E96-A No:7
      Page(s):
    1552-1561

    This paper presents a 7-bit 1.5-GS/s time-interleaved (TI) SAR ADC. The scheme achieves better isolation between sub-ADCs thanks to embedding a track-and-hold (T/H) amplifier and reference voltage buffer in each sub-ADC. The proposed dynamic T/H circuit enables high-speed, low-power operation. The prototype is fabricated in a 65-nm CMOS technology. The total active area is 0.14,mm2 and the ADC consumes 36 mW from a 1.2-V supply. The measured results show the peak spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are 52.4 dB and 39.6 dB, respectively, and an figure of Merit (FoM) of 300 fJ/conv. is achieved.

  • Prototype Highly Integrated 848 Transponder Aggregator Based on Si Photonics for Multi-Degree Colorless, Directionless, Contentionless Reconfigurable Optical Add/Drop Multiplexer

    Hitoshi TAKESHITA  Tomoyuki HINO  Kiyo ISHII  Junya KURUMIDA  Shu NAMIKI  Shigeru NAKAMURA  Shigeki TAKAHASHI  Akio TAJIMA  

     
    PAPER

      Vol:
    E96-C No:7
      Page(s):
    966-973

    Research and development of a multi-degree colorless, directionless and contentionless reconfigurable optical add-drop multiplexer (CDC-ROADM) has recently been attracting a lot of attention. A large-scale transponder aggregator (TPA) is indispensable for providing high-capacity flexible connections to optical networks. In this paper, we report our study of the requirements for the TPA, which is a key technology for achieving flexible optical networks. To meet the requirements, we have developed an 848 TPA prototype based on Si photonics technology. This prototype was made with a few 88 Si optical switches and designed to be used with a commercial ROADM system. The 88 Si optical switches are made by integrating 152 Mach Zehnder (MZ) Thermo Optoelectronic (TO) 22 optical switch elements. A double gate structure is introduced to achieve the high extinction ratio (ER) required for optical communication. To the best of our knowledge, this is the world's first Si-TPA that can be used with a commercial ROADM system. By evaluating the basic optical characteristics utilizing real-time 100 Gbps digital coherent detection as one of today's practical technologies and a 4.4 THz spectral bandwidth 20 Tbps super-channel with digital coherent detection, as a promising future technology, we have confirmed that our prototype Si-TPA has the potential for practical use and future extensibility.

  • Motor Speed Ripple Elimination Using State Dependent Disturbance Observer in Various Time Delay Environments

    Daesung JUNG  Youngjun YOO  Yujin JANG  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:7
      Page(s):
    1562-1570

    We propose a motor speed ripple elimination method using a state dependent disturbance observer (SDDOB). The SDDOB eliminates the state dependent disturbance in the system regardless of the operation frequency, input time delay and output time delay. The SDDOB and a main proportional integral (PI) controller constitute a robust motor speed controller. Experimental results show the effectiveness of the proposed method.

  • Coverage of Irrelevant Components in Systems with Imperfect Fault Coverage

    Jianwen XIANG  Fumio MACHIDA  Kumiko TADANO  Yoshiharu MAENO  Kazuo YANOO  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:7
      Page(s):
    1649-1652

    Traditional imperfect fault coverage models only consider the coverage (including identification and isolation) of faulty components, and they do not consider the coverage of irrelevant (operational) components. One potential reason for the omission is that in these models the system is generally assumed to be coherent in which each component is initially relevant. In this paper, we first point out that an initially relevant component could become irrelevant afterwards due to the failures of some other components, and thus it is important to consider the handling of irrelevancy even the system is originally coherent. We propose an irrelevancy coverage model (IRCM) in which the coverage is extended to the irrelevant components in addition to the faulty components. The IRCM can not only significantly enhance system reliability by preventing the future system failures resulting from the not-covered failures of the irrelevant components, but may also play an important role in efficient energy use in practice by timely turning off the irrelevant components.

  • Network Coder Placement for Peer-to-Peer Content Distribution

    Dinh NGUYEN  Hidenori NAKAZATO  

     
    PAPER

      Vol:
    E96-B No:7
      Page(s):
    1661-1669

    We study the use of network coding to speed up content distribution in peer-to-peer (P2P) networks. Our goal is to get the underlying reason for network coding's improved performance in P2P content distribution and to optimize resource consumption of network coding. We observe analytically and experimentally that in pure P2P networks, a considerable amount of data is sent multiple times from one peer to another when there are multiple paths connecting those two particular peers. Network coding, on the other hand, when applied at upstream peers, eliminates information duplication on paths to downstream peers, which results in more efficient content distribution. Based on that insight, we propose a network coder placement algorithm which achieves comparable distribution time as network coding, yet substantially reduces the number of encoders compared to a pure network coding solution in which all peers have to encode. Our placement method puts encoders at critical network positions to eliminate information duplication the most, thus, effectively shortens distribution time with just a portion of encoders.

  • Reliable and Swift Device Discovery in Consolidated IP and ZigBee Home Networks

    Jin MITSUGI  Shigeru YONEMURA  Takehiro YOKOISHI  

     
    PAPER-Network

      Vol:
    E96-B No:7
      Page(s):
    1837-1844

    This paper proposes a device discovery method for consolidated IP and ZigBee home networks. The method broadcasts an IP multicasted device discovery request of UPnP, m-search, in the ZigBee network as a Constrained Application Protocol (CoAP) message. Upon receiving the m-search broadcast, ZigBee devices respond after a constant time delay with their device description Universal Resource Name (URN). We refer to this device discovery mechanism as transparent msearch. Transparent m-search enables reliable and swift device discovery in home networks which may include constrained networks such as ZigBee. It is revealed by an experiment with 41 ZigBee devices that the delayed response from ZigBee devices is essential to avoid collisions between m-search broadcast and responses from devices and, as a result, to secure the reliability of device discovery. Since the transparent m-search requires the receiving ZigBee devices to respond with their device description URNs, the execution time of device discovery is significantly improved. In our experiment with 41 ZigBee devices, a conventional m-search took 38.1 second to complete device discovery while that of transparent m-search took only 6.3 second.

  • WHIT: A More Efficient Hybrid Method for Single-Packet IP Traceback Using Walsh Matrix and Router Degree Distribution

    Yulong WANG  Ji REN  

     
    PAPER-Internet

      Vol:
    E96-B No:7
      Page(s):
    1896-1907

    Single-packet attack can be tracked with logging-based IP traceback approaches, whereas DDoS attack can be tracked with marking-based approaches. However, both approaches have their limits. Logging-based approaches incur heavy overhead for packet-digest storage as well as time overhead for both path recording and recovery. Marking-based approaches incur little traceback overhead but are unable to track single packets. Simply deploying both approaches in the same network to deal with single-packet and DDoS attacks is not an efficient solution due to the heavy traceback overhead. Recent studies suggest that hybrid approaches are more efficient as they consume less router memory to store packet digests and require fewer attack packets to recover attack paths. Thus, the hybrid single packet traceback approach is more promising in efficiently tracking both single-packet and DDoS attacks. The major challenge lies in reducing storage and time overhead while maintaining single-packet traceback capability. We present in this paper a new hybrid approach to efficiently track single-packet attacks by designing a novel path fragment encoding scheme using the orthogonality of Walsh matrix and the degree distribution characteristic of router-level topologies. Compared to HIT (Hybrid IP Traceback), which, to the best of our knowledge, is the most efficient hybrid approach for single-packet traceback, our approach has three advantages. First, it reduces the overhead by 2/3 in both storage and time for recording packet paths. Second, the time overhead for recovering packet paths is also reduced by a calculatable amount. Finally, our approach generates no more than 2/3 of the false-positive paths generated by HIT.

  • Parameterization of All Stabilizing Two-Degrees-of-Freedom Simple Repetitive Controllers with Specified Frequency Characteristics

    Tatsuya SAKANUSHI  Jie HU  Kou YAMADA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1384-1392

    The simple repetitive control system proposed by Yamada et al. is a type of servomechanism for periodic reference inputs. This system follows a periodic reference input with a small steady-state error, even if there is periodic disturbance or uncertainty in the plant. In addition, simple repetitive control systems ensure that transfer functions from the periodic reference input to the output and from the disturbance to the output have finite numbers of poles. Yamada et al. clarified the parameterization of all stabilizing simple repetitive controllers. Recently, Yamada et al. proposed the parameterization of all stabilizing two-degrees-of-freedom (TDOF) simple repetitive controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately. However, when using the method of Yamada et al., it is complex to specify the low-pass filter in the internal model for the periodic reference input that specifies the frequency characteristics. This paper extends the results of Yamada et al. and proposes the parameterization of all stabilizing TDOF simple repetitive controllers with specified frequency characteristics in which the low-pass filter can be specified beforehand.

  • Circuit Techniques to Enhance Linearity and Intrinsic Gain to Realize a 1.2 V, 200 MHz, +10.3 dBm IIP3 and 7th-Order LPF in a 65 nm CMOS

    Yasuhiro SUGIMOTO  Kazuma SAKATOH  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    867-874

    Circuit techniques to enhance the linearity of input-voltage-to-current (V/I) conversion and to increase the output impedance of a current source by compensating for the low intrinsic gain of a transistor were introduced to realize a high-frequency operational transconductance amplifier (OTA) for a low supply voltage using sub-100-nm CMOS processes. Applying these techniques, a MOS 7th-order Gm-C linear-phase low-pass filter (LPF) was realized using a 65 nm CMOS process. A simplified biquad LPF that can serve as a component of a 7th-order LPF was newly developed by replacing OTAs with resistors. As a result, the -3 dB frequency bandwidth, group delay ripple, 3rd-order distortion, and 3rd-order input intercept point (IIP3) were 200 MHz, 2.2%, ≤ -55 dB with a 100 MHz input, and +10.3 dBm, respectively, all with a ± 0.1 Vp-p input signal at each input terminal in the pseudodifferential configuration. The LPF including an output buffer dissipated 60 mW in the case of a 1.2 V supply. Wide spurious-free dynamic range (SFDR) characteristics were confirmed up to high frequencies.

1301-1320hit(4079hit)