The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERG(867hit)

681-700hit(867hit)

  • Cached Shortest-Path Tree: An Approach to Reduce the Influence of Intra-Domain Routing Instability

    Shu ZHANG  Katsuyoshi IIDA  Suguru YAMAGUCHI  

     
    PAPER-Network

      Vol:
    E86-B No:12
      Page(s):
    3590-3599

    Because most link-state routing protocols, such as OSPF and IS-IS, calculate routes using the Dijkstra algorithm, which poses scalability problems, implementors often introduce an artificial delay to reduce the number of route calculations. Although this delay directly affects IP packet forwarding, it can be acceptable when the network topology does not change often. However, when the topology of a network changes frequently, this delay can lead to a complete loss of IP reachability for the affected network prefixes during the unstable period. In this paper, we propose the Cached Shortest-path Tree (CST) approach, which speeds up intra-domain routing convergence without extra execution of the Dijkstra algorithm, even if the routing for a network is quite unstable. The basic idea of CST is to cache shortest-path trees (SPTs) of network topologies that appear frequently, and use these SPTs to instantly generate a routing table when the topology after a change matches one in the caches. CST depends on a characteristic that we found from an investigation of routing instability conducted on the WIDE Internet in Japan. That is, under unstable routing conditions, both frequently changing Link State Advertisements (LSAs) and their instances tend to be limited. At the end of this paper, we show CST's effectiveness by a trace-driven simulation.

  • A Variable Step-Size Adaptive Cross-Spectral Algorithm for Acoustic Echo Cancellation

    Xiaojian LU  Benoit CHAMPAGNE  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:11
      Page(s):
    2812-2821

    The adaptive cross-spectral (ACS) technique recently introduced by Okuno et al. provides an attractive solution to acoustic echo cancellation (AEC) as it does not require double-talk (DT) detection. In this paper, we first introduce a generalized ACS (GACS) technique where a step-size parameter is used to control the magnitude of the incremental correction applied to the coefficient vector of the adaptive filter. Based on the study of the effects of the step-size on the GACS convergence behaviour, a new variable step-size ACS (VSS-ACS) algorithm is proposed, where the value of the step-size is commanded dynamically by a special finite state machine. Furthermore, the proposed algorithm has a new adaptation scheme to improve the initial convergence rate when the network connection is created. Experimental results show that the new VSS-ACS algorithm outperforms the original ACS in terms of a higher acoustic echo attenuation during DT periods and faster convergence rate.

  • An Application of Grobner Basis Approach to Petri Net Problems

    Tadashi MATSUMOTO  Maki TAKATA  Seiichiro MORO  

     
    LETTER

      Vol:
    E86-A No:11
      Page(s):
    2791-2796

    Finding a nonnegative integer solution x for Ax = b (A Zmn, b Zm1) in Petri nets is NP-complete. Being NP-complete, even algorithms with theoretically bad worst case and with average complexity can be useful for a special class of problems, hence deserve investigation. Then a Grobner basis approach to integer programming problems was proposed in 1991 and some symbolic computation systems became to have useful tools for ideals, varieties, and algorithms for algebraic geometry. In this letter, Grobner basis approach is applied to three typical problems with respect to state equation in P/T Petri nets. In other words, after Grobner bases are derived by the tool Maple 7, we consider how to derive the T-invariants and particular solutions of the Petri nets by using them in this letter.

  • Performance of a Decoding Algorithm for LDPC Codes Based on the Concave-Convex Procedure

    Tomoharu SHIBUYA  Kohichi SAKANIWA  

     
    LETTER-Coding Theory

      Vol:
    E86-A No:10
      Page(s):
    2601-2606

    In this letter, we show the effectiveness of a double-loop algorithm based on the concave-convex procedure (CCCP) in decoding linear codes. For this purpose, we numerically compare the error performance of CCCP-based decoding algorithm with that of a conventional iterative decoding algorithm based on belief propagation (BP). We also investigate computational complexity and its relation to the error performance.

  • Semiautomatic Segmentation Using Spatio-Temporal Gradual Region Merging for MPEG-4

    Young-Ro KIM  Jae-Hwan KIM  Yoon KIM  Sung-Jea KO  

     
    PAPER-Source Coding/Image Processing

      Vol:
    E86-A No:10
      Page(s):
    2526-2534

    The video coding standard MPEG-4 is enabling content-based functionalities. It takes advantage of a prior decomposition of sequences into video object planes (VOP's) so that each VOP represents a semantic object. Therefore, the extraction of semantic video objects is crucial initial part. In this paper, we present an efficient region based semi-automatic segmentation system, which combines low level automatic region segmentation with interactive method for defining and tracking high level semantic video objects. The proposed segmentation system extracts accurate object boundaries using gradual region merging and bi-directional temporal boundary refinement. The system comprises of two steps: an initial object extraction step where user input in the starting frame is used to extract a semantic object; and an object tracking step where underlying regions of the semantic object are tracked and grouped through successive frames. Experiments with different types of videos show the efficiency of the proposed system in semantic object extraction.

  • Bandwidth Constrained Energy Efficient Transmission Protocol in Wireless Sensor Networks

    Jain-Shing LIU  Chun-Hung Richard LIN  

     
    PAPER-Network

      Vol:
    E86-B No:10
      Page(s):
    3039-3049

    The conventional clustering method has the unique potential to be the framework for power-conserving ad hoc networks. In this environment, studies on energy-efficient strategies such as sleeping mode and redirection have been reported, and recently some have even been adopted by some standards like Bluetooth and IEEE 802.11. However, consider wireless sensor networks. The devices employed are power-limited in nature, introducing the conventional clustering approach to the sensor networks provides a unique challenge due to the fact that cluster-heads, which are communication centers by default, tend to be heavily utilized and thus drained of their battery power rapidly. In this paper, we introduce a re-clustering strategy and a power-limit constraint for cluster-based wireless sensor networks in order to address the power-conserving issues in such networks, while maintaining the merits of a clustering approach. Based on a practical energy model, simulation results show that the improved clustering method can achieve a lifetime nearly 3 times that of a conventional one.

  • A Robust Array Architecture for a Capacitorless MISS Tunnel-Diode Memory

    Satoru HANZAWA  Takeshi SAKATA  Tomonori SEKIGUCHI  Hideyuki MATSUOKA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:9
      Page(s):
    1886-1893

    With the aim of applying a MISS tunnel-diode cell to a high-density RAM, we studied its problems and developed three circuit technologies to solve them. The first, a standby-voltage control scheme, reduces standby currents and increases the signal current by 3.4 times compared to the conventional one. The second, a hierarchical bit-line structure, reduces the number of memory cells in a bit-line without increasing the number of sense amplifiers. The third, a twin-dummy-cell technique, generates a proper reference signal to discriminate read currents. These technologies enable a capacitorless MISS diode cell with an effective cell area of 6F 2 (F: minimum feature size) to be applied to a high-density RAM.

  • A Method for Solving Optimization Problems with Equality Constraints by Using the SPICE Program

    Jun GUO  Tetsuo NISHI  Norikazu TAKAHASHI  

     
    PAPER-Optimization and Control

      Vol:
    E86-A No:9
      Page(s):
    2325-2332

    Analog Hopfield neural networks (HNNs) have so far been used to solve many kinds of optimization problems, in particular, combinatorial problems such as the TSP, which can be described by an objective function and some equality constraints. When we solve a minimization problem with equality constraints by using HNNs, however, the constraints are satisfied only approximately. In this paper we propose a circuit which rigorously realizes the equality constraints and whose energy function corresponds to the prescribed objective function. We use the SPICE program to solve circuit equations corresponding to the above circuits. The proposed method is applied to several kinds of optimization problems and the results are very satisfactory.

  • A Fast Encoding Method for Vector Quantization Based on 2-Pixel-Merging Sum Pyramid Data Structure

    Zhibin PAN  Koji KOTANI  Tadahiro OHMI  

     
    LETTER-Image

      Vol:
    E86-A No:9
      Page(s):
    2419-2423

    A fast winner search method for VQ based on 2-pixel-merging sum pyramid is proposed in order to reject a codeword at an earlier stage to reduce the computational burden. The necessary search scope of promising codewords is meanwhile narrowed by using sorted real sums. The high search efficiency is confirmed by experimental results.

  • Energy Spectrum-Based Analysis of Musical Sounds Using Self-Organizing Map

    Masao MASUGI  

     
    LETTER-Speech and Hearing

      Vol:
    E86-D No:9
      Page(s):
    1934-1938

    This paper describes a method of analyzing musical sound using a self-organizing map. To take compound factors into account, energy spectra whose frequency ranges were based on the psycho-acoustic experiments were used as input data. Results for music compact discs confirmed that our method could effectively display the positioning and relationships among musical sounds on a map.

  • Design of a Low-Power Configurable-Way Cache Applied in Multiprocessor Systems

    Hsin-Chuan CHEN  Jen-Shiun CHIANG  

     
    PAPER-Networking and Architectures

      Vol:
    E86-D No:9
      Page(s):
    1542-1548

    In the design of a set-associative cache, maintaining low average access time and reducing the average energy dissipation are important issues. In this paper, we propose a set-associative cache that can provide the flexibility to configure its associativity according to different program behaviors, which means that the proposed cache scheme can be configured from n-way set-associative cache to direct-mapped cache. Besides, the proposed cache scheme also can disable all tag-subarrays and only enable a desired data-subarray when adjacent memory references are within the same block as the previous access. By this scheme, the power consumption can be saved when an n-way set-associative cache configures the cache with lower associativity (less than n) due to only enabling fewer subarrays of the tag memory and data memory, and when the tag checking is eliminated for the intra-block access due to disabling all subarrays of the tag memory. However, the performance is still maintained to the same as the conventional set-associative cache or the direct-mapped cache.

  • Low Complexity Reverselink Beamforming Based on Simplex Downhill Optimization Method for CDMA Systems

    Joonsung LEE  Changheon OH  Chungyong LEE  Dae-Hee YOUN  

     
    LETTER-Antenna and Propagation

      Vol:
    E86-B No:8
      Page(s):
    2541-2544

    A new beamforming method based on simplex downhill optimaization process has been presented for the reverse link CDMA systems. The proposed system performs code-filtering at each antenna for each user. The new beamforming method gives lower computations and faster convergence properties than existing algorithms. The simulation results show that the proposed algorithm has a better BER performance in the case of the time-varing channel.

  • Coarse Frequency Offset Estimation for Digital Audio Broadcasting

    Jeong-Ki MIN  Hyoung-Kyu SONG  

     
    LETTER-Transmission Systems and Transmission Equipment

      Vol:
    E86-B No:7
      Page(s):
    2193-2197

    The coarse frequency offset estimation algorithm has to provide an initial frequency error estimate, which is sufficiently accurate in order to operate reliably for the subsequent fine frequency synchronization algorithm. In this letter, we deal with a coarse frequency offset estimation for digital audio broadcasting. We propose an improved frequency synchronization scheme which uses the minimum energy detection scheme. We compare the performance of proposed scheme with that of conventional schemes under AWGN and Rayleigh channel. It has been shown that the proposed algorithm has high robustness against a large range of symbol timing offset with a low complexity.

  • Energy Balance Formulas in Grating Theory

    Junichi NAKAYAMA  Aya KASHIHARA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:6
      Page(s):
    1106-1108

    The energy conservation law and the optical theorem in the grating theory are discussed: the energy conservation law states that the incident energy is equal to the sum of diffracted energies and the optical theorem means that the diffraction takes place at the loss of the specularly reflection amplitude. A mathematical relation between the optical theorem and the energy conservation law is given. Some numerical examples are given for a TM plane wave diffraction by a sinusoidal surface.

  • Digital Curve Approximation with Length Evaluation

    Tetsuo ASANO  Yasuyuki KAWAMURA  Reinhard KLETTE  Koji OBOKATA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    987-994

    The purpose of this paper is to discuss length estimation based on digitized curves. Information on a curve in the Euclidean plane is lost after digitization. Higher resolution supports a convergence of a digital image towards the original curve with respect to Hausdorff metric. No matter how high resolution is assumed, it is impossible to know the length of an original curve exactly. In image analysis we estimate the length of a curve in the Euclidean plane based on an approximation. An approximate polygon converges to the original curve with an increase of resolution. Several approximation methods have been proposed so far. This paper proposes a new approximation method which generates polygonal curves closer (in the sense of Hausdorff metric) in general to its original curves than any of the previously known methods and discusses its relevance for length estimation by proving a Convergence Theorem.

  • Randomized Time- and Energy-Optimal Routing in Single-Hop, Single-Channel Radio Networks

    Jacir L. BORDIM  Jiangtao CUI  Koji NAKANO  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1103-1112

    A Radio Network (RN, for short) is a distributed system with no central arbiter, consisting of p radio stations each of which is endowed with a radio transceiver. In this work we consider single-hop, single channel RNs, where each station S(i), (1ip), initially stores si items which are tagged with the unique destination they must be routed. Since each item must be transmitted at least once, every routing protocol must take at least n = s1 + s2 + + sp time slots to route each item to its final destination. Similarly, each station S(i), (1ip), must be awake for at least si + di time slots to broadcast si items and to receive di items, where di denotes the number of items destined for S(i). The main contribution of this work is to present a randomized time- and energy-optimal routing protocol on the RN. Let qi, (1ip), be the number of stations that have items destined for S(i), q=q1 +q2 ++ qp, and ri be the number of stations for which S(i) has items. When qi is known to station S(i), our routing protocol runs, with probability exceeding 1 - , (f > 1), in n + O(q + log f) time slots with each station S(i) being awake for at most si + di + O(qi + ri + log f) time slots. Since qidi, risi, and qn always hold, our randomized routing protocol is optimal. We also show that, when the value of di is known to S(i), our routing protocol runs, with probability exceeding 1 - , (f > 1), in O(n + log f) time slots with no station being awake for more than O(si + di + log f) time slots.

  • Impact of Electron Heat Conductivity on Electron Energy Flux

    Kazuya MATSUZAWA  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    320-324

    The validity of the expression for the electron energy flux is evaluated by using the Monte Carlo simulation. The drift, divergence, and scattering terms are directly calculated from changes in the physical values of particles. Each term composing the momentum and energy conservation equations can be reproduced by indirect calculation of the expression for the term that is a function of other physical values. However, it is found that a parameter in electron heat conductivity has to be adjusted to reproduce the direct calculation of the energy flux. Namely, the parameter of the Wiedemann-Franz law for heat conductivity should be chosen so that the underestimations of the drift and diffusion terms in the energy flux equation cancel each other. It is shown that the parameter influences the electron temperature in a 50-nm gate nMOSFET.

  • ICA Papers Classified According to their Applications and Performances

    Ali MANSOUR  Mitsuru KAWAMOTO  

     
    PAPER-Reviews

      Vol:
    E86-A No:3
      Page(s):
    620-633

    Since the beginning of the last two decades, many researchers have been involved in the problem of Blind Source Separation (BSS). Whilst hundreds of algorithms have been proposed to solve BSS. These algorithms are well known as Independent Component Analysis (ICA) algorithms. Nowadays, ICA algorithms have been used to deal with various applications and they are using many performance indices. This paper is dedicated to classify the different algorithms according to their applications and performances.

  • An Investigation of Magnetic Field Effects on Energy States for Nanoscale InAs/GaAs Quantum Rings and Dots

    Yiming LI  Hsiao-Mei LU  

     
    PAPER

      Vol:
    E86-C No:3
      Page(s):
    466-473

    In this paper, we investigate the electron-hole energy states and energy gap in three-dimensional (3D) InAs/GaAs quantum rings and dots with different shapes under external magnetic fields. Our realistic model formulation includes: (i) the effective mass Hamiltonian in non-parabolic approximation for electrons, (ii) the effective mass Hamiltonian in parabolic approximation for holes, (iii) the position- and energy-dependent quasi-particle effective mass approximation for electrons, (iv) the finite hard wall confinement potential, and (v) the Ben Daniel-Duke boundary conditions. To solve the 3D nonlinear problem without any fitting parameters, we have applied the nonlinear iterative method to obtain self-consistent solutions. Due to the penetration of applied magnetic fields into torus ring region, for ellipsoidal- and rectangular-shaped quantum rings we find nonperiodical oscillations of the energy gap between the lowest electron and hole states as a function of external magnetic fields. The nonperiodical oscillation is different from 1D periodical argument and strongly dependent on structure shape and size. The result is useful to study magneto-optical properties of the nanoscale quantum rings and dots.

  • A High-Level Energy-Optimizing Algorithm for System VLSIs Based on Area/Time/Power Estimation

    Shinichi NODA  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-High Level Synthesis

      Vol:
    E85-A No:12
      Page(s):
    2655-2666

    This paper proposes a high-level energy-optimizing algorithm which can synthesize low energy system VLSIs. Given an initial system hardware obtained from an abstract behavioral description, the proposed algorithm applies to it the three energy reduction techniques, 1) reducing supply voltage, 2) selecting lower energy modules, and 3) applying gated clocks. By incorporating our area/delay/power estimation, the proposed algorithm can obtain low energy system VLSIs meeting the constraints of area, delay, and execution time. The proposed algorithm has been incorporated into a high-level synthesis system and experimental results demonstrate effectiveness and efficiency of the algorithm.

681-700hit(867hit)