The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FA(3430hit)

3361-3380hit(3430hit)

  • Characterization of the Laser-Recrystallized Single-Crystalline Si-SiO2 Interface

    Nobuo SASAKI  

     
    PAPER-SOI Wafers

      Vol:
    E75-C No:12
      Page(s):
    1430-1437

    The interface between laser-recrystallized Si and SiO2 is investigated by means of capacitance-voltage curve measurements. The recrystallization is performed by scanning cw Ar+ laser. The change in the C-V curves shows that the laser-recrystallization generates positive charge and the fast interface states at the Si-SiO2 interface, and creates n-type defects in recrystallized bulk silicon. Nominal interface charge increases linearly with a laser power. The increase in the charge is enhanced by fast laser-beam scanning velocity. The change in the C-V curve is suppressed, if a substrate is heated up to 450 during recrystallization. Complete recovery of the induced change in the C-V curves requires a subsequent furnace annealing at a temperature as high as 1100. These phenomena are explained by the generation of oxygen vacancy at the Si-SiO2 interface and quenched-in point defects in the recrystallized Si. The oxygen vacancy is produced by a reaction between the melted Si and SiO2. The quenched-in defects are produced during fast cooling of the melted Si.

  • On the Expressions for the Norton's Surface Wave of a Vertical Dipole

    Akira YOKOYAMA  

     
    LETTER-Antennas and Propagation

      Vol:
    E75-B No:12
      Page(s):
    1376-1378

    Ideal style of arguments of the error function complement contained in the expression for the Norton's surface wave of a vertical dipole over the plane earth is discussed, and then it is pointed out that new formulas have not necessarily desired form as compared with old ones.

  • Analysis of Engine States and Automobile Features Based on Time-Dependent Spectral Characteristics

    Yumi TAKIZAWA  Shinichi SATO  Keisuke ODA  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1524-1532

    This paper describes a nonstationary spectral analysis method and its application to prognosis and diagnosis of automobiles. An instantaneous frequency spectrum is considered first at a single point of time based on the instantaneous representation of autocorrelation. The spectral distortion is then considered on two-dimensional spectrum, and the filtering is introduced into the instantaneous autocorrelations. By the above procedure, the Instantaneous Covariance method (ICOV), the Instantaneous Maximum Entropy Method (IMEM), and the Wigner method are shown and they are unified. The IMEM is used for the time-dependent spectral estimation of vibration and acoustic sound signals of automobiles. A multi-dimensional (M-D) space is composed based on the variables which are obtained by the IMEM. The M-D space is transformed into a simple two-dimensional (2-D) plane by a projection matrix chosen by the experiments. The proposed method is confirmed useful to analyze nonstationary signals, and it is expected to implement automatic supervising, prognosis and diagnosis for a traffic system.

  • Applying Attribute Grammars to Construct Fault-Tolerant Environments for Distributed Software Development

    An FENG  Tohru KIKUNO  Koji TORII  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    810-818

    When a group of developers are involved in the distributed development of some software product, they must communicate with one another frequently to exchange information about the product. To reduce the penalty of communication, the support environment should provide developers with their necessary information and update the information automatically while the product is modified by developers. Furthermore, the environment must meet the following requirements despite of workstation failures: whether a specific information is correct or not should always be decidable; as much information as possible should be updated correctly and efficiently. This paper presents a framework to construct such a fault-tolerant environment based on attribute grammars. In the framework, a product is represented by an attributed tree, which is partitioned into several subtrees {T1,,Tm}. Attribute values in each subtree Ti(1im) express the information about the product required by a developer. We introduce a set of redundant data and algorithms to meet the fault-tolerance requirements mentioned above. The correctness of an attribute value in Ti can then be decided in O(mn0log n) time, where n0n, and n is the number of attribute instances in Ti. All available attribute values can be updated with time complexity O(m2n1 log n) and communication complexity O(m2), where n1 is the number of attribute instances that must be reevaluated.

  • A 2-Rail Logic Combinational Circuit for Easy Detection of Stuck-Open and Stuck-On Faults in FETs

    Hideo ITO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E75-D No:6
      Page(s):
    894-901

    The self-checking design using 2-rail logic is one of the most popular design of self-shecking circuits. Even for a self-checking circuit, a test is necessary after VLSI chip or system fabrication, at each time the system is powered, and, under certain circumstances, in the case of maintenance. Therefore, an easy test scheme is desirable for that circuit. A new design method for a 2-rail logic combinational circuit is proposed, where stuck-open and sutck-on faults FETs can be easily detected. In the proposed circuit design, 4 FETs are added to each gate in a conventional 2-rail logic circuit. Two logical gates, DOR and DAND, are also added to the circuit as fault observing gates. Each test consists of a sequence of 3 input vectors, that is, a type of 3-pattern test, ti1ti2ti3. A test can be easily generated and fault observation is easy. Stuck-at fault and stuck-open fault on lines and almost all multiple faults can also be detected by the test. A gate construction method, test generation method, circuit construction method, and several discussions including gate delay increasing are presented.

  • Fault Tolerance of an Information Disseminating Scheme on a Processor Network

    Kumiko KANAI  Yoshihide IGARASHI  Kinya MIURA  

     
    PAPER-Algorithms, Data Structures and Computational Complexity

      Vol:
    E75-A No:11
      Page(s):
    1555-1560

    We discuss fault tolerance of an information disseminating scheme, t-disseminate on a network with N processors, where each processor can send a message to t directions at each round. When N is a power of t+1 and at most tlogt+1N-1 (at most t) processors and/or edges have hailed, logt+1N+(f1)/t rounds (logt+1N+2 rounds) suffice for broadcasting information to all destinations from any source by t-disseminate. For a arbitrary N, logt+1N2f/t1 rounds (logt+1N+2 rounds) suffice for broadcasting information to all destinations from any source by t-disseminate if at most t(logt+1N1)/2 (at most t/2) processors and/or edges have failed.

  • Generalization Ability of Feedforward Neural Network Trained by Fahlman and Lebiere's Learning Algorithm

    Masanori HAMAMOTO  Joarder KAMRUZZAMAN  Yukio KUMAGAI  Hiromitsu HIKITA  

     
    LETTER-Neural Networks

      Vol:
    E75-A No:11
      Page(s):
    1597-1601

    Fahlman and Lebiere's (FL) learning algorithm begins with a two-layer network and in course of training, can construct various network architectures. We applied FL algorithm to the same three-layer network architecture as a back propagation (BP) network and compared their generalization properties. Simulation results show that FL algorithm yields excellent saturation of hidden units which can not be achieved by BP algorithm and furthermore, has more desirable generalization ability than that of BP algorithm.

  • Verification of Register Transfer Level (RTL) Designs

    Alberto Palacios PAWLOVSKY  Sachio NAITO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    785-791

    This paper describes a new method for verifying designs at the RTL with respect to their specifications at the functional level. The base of the verification method shown here is the translation of the specification and design representations to graph models, where the descriptions common to both representations have a symbolic representation. These symbol labeled graphs are then simplified and, by solving the all node-pair path expression problem for them, a pair of regular expressions is obtained for every two nodes in the graphs. The first regular expression in each pair represents the flow of control and the second one the flow of data between the corresponding nodes. The process of verification is carried out by checking whether or not every pair of regular expressions of the specification has a corresponding pair in the design.

  • A Fault Tolerant Intercommunication Scheme Using Bank Memory Switching

    Norihiko TANAKA  Takakazu KUROKAWA  Takashi MATSUBARA  Yoshiaki KOGA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    804-809

    This paper proposes a new fault tolerant intercommunication scheme for real-time operations and three new interconnection networks to construct a fault tolerant multi-processor system for pipeline processings. The proposed intercommunication scheme using bank memory switching technique has an advantage to make a fault tolerant pipeline system so that it can detect any failure caused in a processing element of the system. In addition, it can overcome conventional problems caused in interconnection circuits to flow data with one way direction such as a pipeline processing.

  • A Bipolar Divided Word-Line Scheme for a High-Speed and Large-Capacity BiCMOS SRAM

    Takakuni DOUSEKI  Tadashi NAGAYAMA  Yasuo OHMORI  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1364-1368

    A divided work-line scheme which uses a bipolar current-switch circuit is proposed. This structures allows high-speed and low-power operation by reducing the logic swing in the long main word lines and decreasing the current in the nonselected decoder. Two key circuits, the bipolar main decoder and the section decoder, are described in detail. These circuits, with a bipolar two-level cascode current-swich circuit, enable the SRAM to operate on a low external supply voltage. To demonstrate the effectiveness of this concept, an ECL100K interface 256-kb SRAM is designed and fabricated using 0.8-µm BiCMOS technology. A typical address access time of 5.5 ns and the power consumption of 750 mW are obtained.

  • Eliminating Redundant Components While Building Solid Models by Surface Points Evaluation

    Chun YANG  Shan Jun ZHANG  Toshio KAWASHIMA  Yoshinao AOKI  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:11
      Page(s):
    1561-1569

    Existing solid models often contain redundant primitives and null blocks, which both slows down the rendering process and makes the process complex. There has been recent progress toward solving this problem, but existing modeling schemes cannot support eliminating all the redundancies, especially the null blocks, from the solid models. This paper proposed a technique that can eliminate redundancies. By dividing a primitive into some surface dispersed points, a new primitive representation is obtained. The sample segments of the primitive or the object are used to locate composition position to prevent the null primitives from being generated. By drawing out the geometric shape points set corresponding to a common acting area, the volume boundary of a primitive or an object is evaluated by only the Boolean set operations. The null blocks can be picked out in terms of the volume boundary. The resulting solid model generated in this way has no redundancies and is suitable for fast rendering of the image.

  • A Design Method of SFS and SCD Combinational Circuits

    Shin'ichi HATAKENAKA  Takashi NANYA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    819-823

    Strongly Fault-Secure (SFS) circuits are known to achieve the TSC goal of producing a non-codeword as the first erroneous output due to a fault. Strongly Code-Disjoint (SCD) circuits always map non-codeword inputs to non-codeword outputs even in the presence of faults so long as the faults are undetectable. This paper presents a new generalized design method for the SFS and SCD realization of combinational circuits. The proposed design is simple, and always gives an SFS and SCD combinational circuit which implements any given logic function. The resulting SFS/SCD circuits can be connected in cascade with each other to construct a larger SFS/SCD circuit if each interface is fully exercised.

  • A Tool for Computing the Output Code Spaces and Verifying the Self-Checking Properties in Complex Self-checking Systems

    Makhtar BOUDJIT  Michael NICOLAIDIS  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    824-834

    In complex self-checking systems several blocks (i.e. functional blocks and checkers) are embedded. In order to check the self-checking properties of such blocks we need to know the set of vectors they receive from the blocks feeding their inputs (i.e. the code word output spaces of the source blocks). In a complex system the computation of the output spaces by means of exhaustive simulation of the system is intractable. In this paper we present a tool which performs this computation with low CPU time. Some other tools allowing to verify the self-checking properties of embedded blocks (like the strongly fault secure property of embedded PLAs and the self-testing property of embedded checkers), have also been developed and experimented.

  • Fault Tolerance Assurance Methodology of the SXO Operating System for Continuous Operation

    Hiroshi YOSHIDA  Hiroyuki SUZUKI  Kotaro OKAZAKI  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    797-803

    In developing the SXO operating system for the SURE SYSTEM 2000 continuous operation system, we aimed to create an unprecedentedly high software and hardware fault tolerance. We devised a fault tolerant architecture and various methodologies to ensure fault tolerance. We implemented these techniques systematically throughout operating system development. In the design stage, we developed a design methodology called the recovery process chart to verify that recovery mechanisms were complete. In the manufacturing stage, we applied the concept of critical routes to recovery and other processes essential to high dependability. We also developed a method of finding critical routes in a recovery process chart. In the test stage, we added an artificial software fault injection mechanism to the operating system. It generates various reproducible errors at appropriate times and reduces the number of personnel needed for test, making system reliability evaluation easy.

  • Modeling and Simulation of the Sliding Window Algorithm for Fault-Tolerant Clock Synchronization

    Manfred J. PFLUEGL  Douglas M. BLOUGH  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    792-796

    Synchronous clocks are an essential requirement for a variety of distributed system applications. Many of these applications are safety-critical and require fault tolerance. In this paper, a general probabilistic clock synchronization model is presented. This model is uniformly probabilistic, incorporating random message delays, random clock drifts, and random fault occurrences. The model allows faults in any system component and of any type. Also, a new Sliding Window Clock Synchronization Algorithm (SWA) providing increased fault tolerance is proposed. The probabilistic model is used for an evaluation of SWA which shows that SWA is capable of tolerating significantly more faults than other algorithms and that the synchronization tightness is as good or better than that of other algorithms.

  • A Fast Adaptive Algorithm Suitable for Acoustic Echo Canceller

    Kensaku FUJII  Juro OHGA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1509-1515

    This paper relates to a novel algorithm for fast estimation of the coefficients of the adaptive FIR filter. The novel algorithm is derived from a first order IIR filter experssion clarifying the estimation process of the NLMS (normalized least mean square) algorithm. The expression shows that the estimation process is equivalent to a procedure extracting the cross-correlation coefficient between the input and the output of an unknown system to be estimated. The interpretation allows to move a subtraction of the echo replica beyond the IIR filter, and the movement gives a construction with the IIR filter coefficient of unity which forms the arithmetic mean. The construction in comparison with the conventional NLMS algorithm, improves the covergence rate extreamly. Moreover, when we use the construction with a simple technique which limits the term of calculating the correlation coefficient in the beginning of a convergence process, the convergence delay becomes negligible. This is a very desirable performance for acoustic echo canceller. In this paper, double-talk and echo path fluctuation are also studied as the first stage for application to acoustic echo canceller. The two subjects can be resolved by introducing two switches and delays into the evaluation process of the correlation coefficient.

  • Petri Net Based Programming System for FMS

    Yoichi NAGAO  Hideaki OHTA  Hironobu URABE  Sadatoshi KUMAGAI  

     
    INVITED PAPER

      Vol:
    E75-A No:10
      Page(s):
    1326-1334

    This paper describes a programming system, K-NET for the development of control software for flexible manufacturing systems composed of robots, numerically-controlled machines, transfer machines and automatic storage/retrieval systems. K-NET is based on a high-level Petri net which makes it simple to express operational functions such as synchronization, interlock and concurrence in sequence control. Petri net in K-NET is colored one in which tokens have attributes, and timed one which can provide a notion of stochastic time. K-NET provides many kinds of boxes having specific functions, and gates specified the firing condition and the token flow control with IF-THEN rules. On the other hand, procedural language can be also used for information processing. K-NET can support all development stages including general design, detailed design, programming and testing. K-NET has an editor to input control specifications expressed with Petri net; a simulator to verify edited specifications; a generator to convert the net to C source programs for a computer or to ladder diagrams for a programmable controller; a reporter to print control specifications; and a monitor to display controller status in real-time. K-NET has been used in the development of control software for an automated guided vehicle system, and results show a 2/3rds cost-saving over development with conventional methods in which only procedural language is used.

  • Optimal Cycle Time and Facility Utilization of Production Systems Including Repetitive Process with Set-up Time Modelled by Timed Marked Graphs

    Masaki AKAZA  Dong-Ik LEE  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1385-1393

    A job shop system typically seen in flexible manufacturing systems (FMS) is a system composed of a set of machines and a various kind of jobs processed with the machines. A production system of semiconductor fabrication is an example of job shop systems, which has main features of repetitive processes of one part and set-up times required for machines processing different types of parts. On the other hand, timed Petri nets are used for modelling and analyzing a wide variety of discrete event systems. There are many applications of timed Petri nets to the scheduling problems of job shop systems. The performance evaluation and steady state behaviors are studied by using the maximum cycle time of timed marked graphs. The aim of this paper is to propose a new model for production systems including repetitive processes and set-up time requirements which enables the quantitative analysis of real time system performance. In job shop systems such as a semiconductor fabrication system, it takes considerable amount of set-up time to prepare different types of chemical reactions and the model should take account of a set-up time for each machine. We focus upon the relationship between facility utilization factor and production cycle time in the steady state. In the proposed model, the minimum total set-up time can be attained. Quantitative relationship between utilization factor and production cycle time is derived by using the proposed model. A utilization factor of a system satisfying a given limit of the cycle time is evaluated, and the improvement of the utilization factor is considered. Conversely, we consider the improvement of the cycle time of a system satisfying a given limit of utilization factor.

  • A 1000 MIPS Superscalar Processor and Its Fault Tolerant Design

    Alberto Palacios PAWLOVSKY  Makoto HANAWA  Osamu NISHII  Tadahiko NISHIMUKAI  

     
    PAPER-RISC Technologies

      Vol:
    E75-C No:10
      Page(s):
    1212-1222

    Advances in semiconductor technology have made it possible to develop an experimental 1000 MIPS superscalar RISC processor. The high performance of this processor was obtained using architectural concepts such as multiple CPU configuration, superscalar microarchitecture, and high-speed device technology. This paper focuses on the novel features of this RISC processor, its device technology, architectural characteristics and one technology that has been devised to make its integer CPU cores fault-tolerant.

  • An Integrated User-Friendly Specification Environment for LOTOS

    Norio SHIRATORI  Eun-Seok LEE  

     
    INVITED PAPER

      Vol:
    E75-B No:10
      Page(s):
    931-941

    This paper presents unique specification environments for LOTOS, which is one of FDTs (Formal Description Techniques) developed in ISO. We first discuss the large gap in terms of syntax and semantics between informal specifications at the early stage of specification design and formal specifications based on FDT such as LOTOS. This large gap has been bridged by human intelligent works thus far. In order to bridge the large gap, we have designed user-friendly specification environments for FDTs. The outlines of SEGL (Specification Environment for G-LOTOS), CBP (Concept-Based Programming environment) and MBP (Model-Based Programming environment) are described. The effectiveness of software development under such an environment is demonstrated using application examples from OSI and non-OSI protocols.

3361-3380hit(3430hit)