The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FA(3430hit)

3321-3340hit(3430hit)

  • Generalized Marching Test for Detecting Pattern Sensitive Faults in RAMs

    Masahiro HASHIMOTO  Eiji FUJIWARA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    809-816

    Since semiconductor memory chip has been growing rapidly in its capacity, memory testing has become a crucial problem in RAMs. This paper proposes a new RAM test algorithm, called generalized marching test (GMT), which detects static and dynamic pattern sensitive faults (PSF) in RAM chips. The memory array with N cells is partitioned into B sets in which every two cells has a cell-distance of at least d. The proposed GMT performs the ordinary marching test in each set and finally detects PSF having cell-distance d. By changing the number of partitions B, the GMT includes the ordinary marching test for B1 and the walking test for BN. This paper demonstrates the practical GMT with B2, capable of detecting PSF, as well as other faults, such as cell stuck-at faults, coupling faults, and decoder faults with a short testing time.

  • Efficient Methods for Guided-Probe Diagnosis

    WEN Xiaoqing  Noriyoshi ITAZAKI  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    817-825

    To speed up a guided-probe diagnosis process, the number of probed lines needs to be reduced. This paper presents two efficient probing line determination methods by which the number of probed lines is either small or minimum. The concept of fault probability is introduced to reflect the fact that not all gates have the same probability to be faulty. Experimental results show the effectiveness of the proposed methods.

  • 10Gbit/s, 35mV Decision IC Using 0.2µm GaAs MESFETs

    Masanobu OHHATA  Minoru TOGASHI  Koichi MURATA  Satoshi YAMAGUCHI Masao SUZUKI  Kazuo HAGIMOTO  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    745-747

    This letter reports a high-sensitivity GaAs decision IC for ultra-high-speed optical transmission systems. The IC was designed using LSCFL (Low-power Source Coupled FET Logic) and fabricated with 0.2-µm-gate-length MESFETs with a cut-off frequency of 50GHz. The input voltage sensitivity was 35mV at 10Gbit/s. This is the highest sensitivity ever reported for a MESFET decision IC.

  • 3D Facial Modelling for Model-Based Coding

    Hiroyuki MORIKAWA  Eiji KONDO  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E76-B No:6
      Page(s):
    626-633

    We describe an approach for modelling a person's face for model-based coding. The goal is to estimate the 3D shape by combining the contour analysis and shading analysis of the human face image in order to increase the quality of the estimated 3D shape. The motivation for combining contour and shading cues comes from the observation that the shading cue leads to severe errors near the occluding boundary, while the occluding contour cue provides incomplete surface information in regions away from contours. Towards this, we use the deformable model as the common level of integration such that a higher-quality measurement will dominate the depth estimate. The feasibility of our approach is demonstrated using a real facial image.

  • Critical Slice-Based Fault Localization for Any Type of Error

    Takao SHIMOMURA  

     
    PAPER-Software Systems

      Vol:
    E76-D No:6
      Page(s):
    656-667

    Existing algorithmic debugging methods which can locate faults under the guidance of a system have a number of shortcomings. For example, some cannot be applied to imperative languages with side effects; some can locate a faulty function but cannot locate a faulty statement; and some cannot detect faults related to missing statements. This paper presents an algorithmic critical slice-based fault-locating method for imperative languages. Program faults are first classified into two categories: wrong-value faults and missing-assignment faults. The critical slice with respect to a variable-value error is a set of statements such that (1) a wrong-value fault contained in any instruction in the critical slice may have caused that variable-value error, and (2) a wrong-value fault contained in any instruction outside the critical slice could never have caused that variable-value error. The paper also classifies errors found during program testing into three categories: wrong-output errors, missing-output errors, and infinite-loop errors with no output. It finally shows that it is possible to algorithmically locate any fault, including missing statements, for each type of error.

  • Very Small MMIC Variable Frequency and Q Factor Active Bandpass Filters Using Novel Positive and Negative Feedback Design Techniques

    Hideo SUWAKI  Takashi OHIRA  

     
    PAPER

      Vol:
    E76-C No:6
      Page(s):
    919-924

    This paper presents newly developed very small MMIC bandpass filters along with novel positive and negative feedback techniques. In order to maintain the expected Q factor without unwanted oscillations in the positive feedback loop, the unity-coupler principle is proposed to stabilize the constituent amplifier. A prototype bandpass filter is monolithically integrated in a very small area of only 0.1 mm2 on a GaAs substrate. A sharp factor as high as 5.6/1-30 dB is achieved near the frequency range of 1 GHz. The other technique presented in this paper is to achieve the bandpass function without using any positive feedback. This is negative feedback consisting of feedback elements with the unique variable transfer function of b/(1as). A variable bandpass filter based on this design concept is also fabricated in a 1.21.3 mm2 area on a GaAs substrate. It has both a varactor and varistor integrated in the circuit, resulting in an independently controllable center frequency and Q factor. It is shown experimentally that the Q factor is controllable over a remarkable range of 20 to 400 and the center frequency is broader than 100 MHz at the 1 GHz band. By cascading two of the fabricated MMIC chips, a forth-order frequency response is successfully obtained along with a 35-40 dB forward gain and an in-band gain flatness of 0.35 dB.

  • Numerical Analysis of Optical Bistability in a Variety of Nonlinear Fabry-Perot Resonators

    Kazuhiko OGUSU  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:6
      Page(s):
    1000-1006

    This paper presents a simple numerical method for calculating the stationary transmission and reflection characteristics of a variety of nonlinear Fably-Perot resonators. In nonlinear media, Maxwell's equations are directly solved by using a numerical integration of complex variables. The input-output characteristics of the Kerr-like nonlinear film without reflection mirrors and with multilayer mirrors have been calculated to demonstrate the usefulness and versatility of the proposed method and to find out resonator configurations exhibiting optical bistability at low incident-power levels. The effects of saturation in the nonlinear permittivity on the input-output characteristics have also been investigated. It has been found that a single nonlinear film with oblique incidence exhibits optical bistability without using reflection mirrors even if the refractive index of the film is low. This offers a simple method for measuring third-order nonlinearities of optical materials.

  • Toward the New Era of Visual Communication

    Masahide KANEKO  Fumio KISHINO  Kazunori SHIMAMURA  Hiroshi HARASHIMA  

     
    INVITED PAPER

      Vol:
    E76-B No:6
      Page(s):
    577-591

    Recently, studies aiming at the next generation of visual communication services which support better human communication have been carried out intensively in Japan. The principal motive of these studies is to develop new services which are not restricted to a conventional communication framework based on the transmission of waveform signals. This paper focuses on three important key words in these studies; "intelligent," "real," and "distributed and collaborative," and describes recent research activities. The first key word "intelligent" relates to intelligent image coding. As a particular example, model-based coding of moving facial images is discussed in detail. In this method, shape change and motion of the human face is described by a small number of parameters. This feature leads to the development of new applications such as very low bit-rate transmission of moving facial images, analysis and synthesis of facial expression, human interfaces, and so on. The second key word "real" relates to communication with realistic sensations and virtual space teleconferencing. Among various component technologies, real-time reproduction of 3-D human images and a cooperative work environment with virtual space are discussed in detail. The last key word "distributed and collaborative" relates to collaborative work in a distributed work environment. The importance of visual media in collaborative work, a concept of CSCW, and requirements for realizing a distributed collaborative environment are discussed. Then, four examples of CSCW systems are briefly outlined.

  • Fault Analysis on (K+1)-Valued PLA Structure Logic Circuits

    Hui Min WANG  Chung Len LEE  Jwu E CHEN  

     
    PAPER-Fault Analysis, Testing and Verification

      Vol:
    E76-A No:6
      Page(s):
    1001-1010

    This paper presents a general form and a set of basic gates to implement (K+1)-valued PLA structure logic circuits. A complete fault analysis on the proposed circuit has been done and it is shown that all fanout stem faults can be collapsed to branch faults. A procedure for fault collapsing is derived. For any function implemented in the (K+1)-valued circuit, the number of remaining faults is smaller than that of the 2-valued circuit after the collapsing, where the value of K is dependent on the number of outputs and the assignment of the OR plane of the 2-valued logic circuit.

  • A 156-Mb/s Interface CMOS LSI for ATM Switching Systems

    Takahiko KOZAKI  Kiyoshi AIKI  Makoto MORI  Masao MIZUKAMI  Ken'ichi ASANO  

     
    PAPER-Communication Device and Circuit

      Vol:
    E76-B No:6
      Page(s):
    684-693

    This paper describes a 0.8-µm CMOS LSI developed for a 156-Mb/s serial interface in ATM switching systems. Recently, there have been increasing problems of connector pin neck and higher power consumption when enhancing switching system capacity. To overcome these problems, we have developed an LSI with a high-speed interface by using CMOS technology to achieve low power consumption. A low-swing differential signal level is used to achieve 156-Mb/s data transmission. We named this new circuit technique ALTS (Advanced Low-level Transmission circuit System). Using the LSI, transmission can be achieved between boards or racks through a 10-meter twisted pair cable. The LSI has a 156-Mb/s transmitter-receiver, a serial-to-parallel converter and a parallel-to-serial converter. It performs 19.5-Mb/s parallel data/156-Mb/s serial data conversion and 156-Mb/s serial data transmission. In addition, it has a bit phase synchronizer and cell synchronizer, which enables it to transmit and synchronize serial data without a paralleled clock or a paralleled cell top signal, by distributing a common 156-MHz clock and a common cell top signal to the whole system. We evaluated the bit error rate and timing margin on data transmission under several conditions. The results show that we can apply this LSI to commercially available ATM switching systems. This paper also describes methods of expanding switch capacity and transmitting 624-Mb/s data using this LSI.

  • A Database-Domain Hierarchy-Based Technique for Handling Unknown Terms in Natural Language Database Query Interfaces

    Zouheir TRABELSI  Yoshiyuki KOTANI  Nobuo TAKIGUCHI  Hirohiko NISHIMURA  

     
    PAPER-Databases

      Vol:
    E76-D No:6
      Page(s):
    668-679

    In using a natural language database interface (NLI) to access the contents of a databese, the user queries may contain terms that do not appear at all in both the NLI lexicon and the database. A friendly NLI should not reject user queries with unknown terms, but should be able to handle them, and should be able to learn new lexical items. Such capability increases the usefulness of the NLI, and allows the NLI to more cover the domain of the underlying database. Therefore, a technique to handle unknown terms is decisive in designing a friendly NLI. In this work, we discuss a method that would allow a NLI to identify the meanings of unknown database field values, and terms that are exceeding the conceptual coverage of the database, in the user queries, by engaging the user in clarification dialogues based on a database-domain hierarchy. It will be shown that the method enables the NLI lexicon to learn new lexical items at run time while the clarification dialogues, and it may provide the necessary information for generating informative answers to some particular failing user queries. Moreover, the method is an efficient means to handle queries with insufficience contextual cues. The examples throughout this work are drawn from FIFA 90, an experimental NLI to a soccer database.

  • 3-D Object Recognition System Based on 2-D Chain Code Matching

    Takahiro HANYU  Sungkun CHOI  Michitaka KANEYAMA  Tatsuo HIGUCHI  

     
    PAPER-Methods and Circuits for Signal Processing

      Vol:
    E76-A No:6
      Page(s):
    917-923

    This paper presents a new high-speed three-dimensional (3-D) object recognition system based on two-dimensional (2-D) chain code matching. An observed 3-D object is precisely represented by a 2-D chain code sequence from the discrete surface points of the 3-D object, so that any complex objects can be recognized precisely. Moreover, the normalization procedures such as translation, rotation of 3-D objects except scale changes can be performed systematically and regularly regardless of the complexity of the shape of 3-D objects, because almost all the normalization procedures of 3-D objects are included in the 2-D chain code matching procedure. As a result, the additional normalization procedure become only the processing time for scale changes which can be performed easily by normalizing the length of the chain code sequence. In addition, the fast fourier transformation (FFT) is applicable to 2-D chain code matching which calculates cross correlation between an input object and a reference model, so that very fast recognition is performed. In fact, it is demonstrated that the total recognition time of a 3-D ofject is estimated at 5.35 (sec) using the 28.5-MIPS SPARC workstation.

  • A Recycling Scheme for Layout Patterns Used in an Old Fabrication Technology

    Yuji SHIGEHIRO  Isao SHIRAKAWA  

     
    PAPER-Algorithms for VLSI Design

      Vol:
    E76-A No:6
      Page(s):
    886-893

    When a new fabrication process is set up, especially in layout design for functional cells, of practical importance is how to make the best use of layout resources so far accumulated in old fabrication processes. Usually layout data of each element are expressed mostly in terms of positional coordinate values, and hence it is extremely tedious to modify them at every change of design rules for a new fabrication technology. To cope with this difficulty, the present paper describes an automatic recycling scheme for layout resources accumulated dedicatedly for functional cell generation. The main subject of this scheme is to transform given layout data into a layout description format expressed in layout parameters. Once layout data are parameterized, layout patterns of functional cells can be reconstructed simply by tuning up parameters in accordance with a new set of design rules. A part of implementation results are also shown.

  • Safety Control of Power Press by Using Fail-Safe Multiple-Valued Logic

    Masayoshi SAKAI  Masakazu KATO  Koichi FUTSUHARA  Masao MUKAIDONO  

     
    PAPER-Fail-Safe/Fault Tolerant

      Vol:
    E76-D No:5
      Page(s):
    577-585

    This paper first clarifies the logic construction of safety control for the operation of a power press and then describes fail-safe dual two-rail system signal processing and fail-safe multiple-valued logic operations as methods for achieving this control as a fail-safe system. It finally shows a circuit for generating fail-safe two-rail run button signals based on ternary logic for concrete operation of the power press and an operation control circuit for confirming brake performance for each cycle of slide operation by using the run button signals. The control circuit uses such multiple-valued logic operations that binary logic signals that do not erroneously go logic 1 are added to a multiple-valued logic signal and the multiple-valued logic signal is converted to a binary logic signal that does not erroneously go logic 1 by a threshold operation.

  • Fault Tolerant Properties and a Fault-Checking Method of Fuzzy Control

    Hiroshi ITO  Takashi MATSUBARA  Takakazu KUROKAWA  Yoshiaki KOGA  

     
    PAPER-Fail-Safe/Fault Tolerant

      Vol:
    E76-D No:5
      Page(s):
    586-593

    Generally it is said that a fuzzy control system has fault tolerant properties, but it is not clearly studied. In this paper, first, the influence of faults in fuzzy control systems is examined. Errors given by fault simulation are not negligible. However, no fault detecting method is applied in the realized fuzzy control systems. Then a fault-checking method to detect faults is proposed in this paper.

  • Surface Reconstruction Model for Realistic Visualization

    Hiromi T. TANAKA  Fumio KISHINO  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    494-500

    Surface reconstruction and visualization from sparse and incomplete surface data is a fundamental problem and has received growing attention in both computer vision and graphics. This paper presents a computational scheme for realistic visualization of free-formed surfaces from 3D range images. The novelty of this scheme is that by integrating computer vision and computer graphics techniques, we dynamically construct a mesh representation of the arbitrary view of the surfaces, from a view-invariant shape description obtained from 3D range images. We outline the principle of this scheme and describle the frame work of a graphical reconstruction model, we call arbitrarily oriented meshes', which is developed based on differential geometry. The experimental results on real range data of human faces are shown.

  • Improvement of Fatigue Behavior of the Spliced Portion on Hermetically Carbon-Coated Fibers

    Isamu FUJITA  Masahiro HAMADA  Haruhiko AIKAWA  Hiroki ISHIKAWA  Keiji OSAKA  Yasuo ASANO  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    364-369

    Improvement of fatigue behavior of a fusion spliced portion on a carbon-coated fiber is achieved by recoating carbon using a thermal-CVD process with a CO2 laser as a local heat source. The fatigue parameters, so-called n-values, of 121 and 94 are obtained on the non-spliced portion and the spliced portion, respectively. Assuming a life time prediction model, these high values have been proved to have an advantage in a long-term reliability and to be sufficient in a practical submarine cable use.

  • Ultrahigh Speed Optical Soliton Communication Using Erbium-Doped Fiber Amplifiers

    Eiichi YAMADA  Kazunori SUZUKI  Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    410-419

    Optical soliton transmissions at 10 and 20Gbit/s over 1000km with the use of erbium-doped fiber amplifiers are described in detail. For the 10Gbit/s experiment, a bit error rate (BER) of below 110-13 was obtained with 220-1 pseudorandom patterns and the power penalty was less than 0.1dB. In the 20Gbit/s experiment optical multiplexing and demultiplexing techniques were used and a BER of below 110-12 was obtained with 223-1 pseudorandom patterns under a penalty-free condition. A new technique for sending soliton pulses over ultralong distances is presented which incorporates synchronous shaping and retiming using a high speed optical modulator. Some experimental results over 1 million km at 7.210Gbit/s are described. This technique enables us to overcome the Gordon-Haus limit, the accumulation of amplified spontaneous emission (ASE), and the effect of interaction forces between adjacent solitons. It is also shown by computer runs and a simple analysis that a one hundred million km soliton transmission is possible by means of soliton transmission controls in the time and frequency domains. This means that limit-free transmission is possible.

  • A Comparative Study of High-Field Endurance for NH3-Nitrided and N2O-Oxynitrided Ultrathin SiO2 Films

    Hisashi FUKUDA  

     
    PAPER-Device Technology

      Vol:
    E76-C No:4
      Page(s):
    511-518

    Two kinds of nitrided ultrathin (510 nm) SiO2 films were formed on the silicon (100) face using rapid thermal NH3-nitridation (RTN) and rapid thermal N2O-oxynitridation (RTON) technologies. The MOS capacitors with RTN SiO2 film showed that by Fowler-Nordheim (F-N) electron injection, both electron trap density and low-field leakage increase by the NH3-nitridation. In addition, the charge-to-breakdown (QBD) value decreases owing to NH3-nitridation. By contrast, RTON SiO2 films exhibited extremely low electron trap density, almost no increase of the leakage current, and large QBD value above 200C/cm2. The oxide film composition was evaluated by secondary ion mass spectroscopy (SIMS). The chemical bonding states were also examined by Fourier transform-infrared reflection attenuated total reflectance (FT-IR ATR) and X-ray photoelectron spectroscopy (XPS) measurements. These results indicate that although a large number of nitrogen (N) atoms are incorporated by the RTN and RTON, only the RTN process generates the hydrogen-related species such as NH and SiH bounds in the film, whereas the RTON film indicates only SiN bonds in bulk SiO2. From the dielectric and physical properties of the oxide films, it is considered that the oxide wearout by high-field stress is the result of the electron trapping process, in which anomalous leakage due to trap-assisted tunneling near the injected interface rapidly increases, leading to irreversible oxide failure.

  • Facial Caricaturing Based on Visual Illusion--A Mechanism to Evaluate Caricature in PICASSO System--

    Kazuhito MURAKAMI  Hiroyasu KOSHIMIZU  Akira NAKAYAMA  Teruo FUKUMURA  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    470-478

    In the PICASSO, a system for the facial caricature generation, as the basic mechanisms to extract the individuality features of faces and to deform the features have been already introduced, it is expected to realize an autonomous mechanism to evaluate facial caricatures. The evaluation should be based on the framework of human visual cognition. In the PICASSO, some visual illusions such as the Wundt-Fick illusion and the Ponzo illusion for example, are applied to evaluate the shapes of the facial parts such as eyebrows, nose, mouth and face contour, in the deformation process. In many cases, as well-deformed caricatures are evaluated to be successful, it is confirmed that the utilization of the visual illusion is effective to evaluate the results of caricatures. In this paper, some experimental results are presented together with the definition of the evaluation measures and the further subjects.

3321-3340hit(3430hit)