The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IN(26286hit)

25961-25980hit(26286hit)

  • Computer-Aided Stepwise Service Creation for the Intelligent Network

    Yoshihiro NIITSU  Osamu MIZUNO  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    969-977

    This paper describes a computer-aided service creation environment (CSCE) for the intelligent network which supports easier graphical specification description for service designers of various skill levels, and service logic program (SLP) generation. The CSCE design concept consists of stepwise service specification description and SLP generation, message sequence chart description language (LSDL: Layered Service Specification Description Language), computer-aided sophisticated interface (IEDs: Intelligent Editors), automatic specification verification and rapid service prototyping. Service specification is described by three steps and in LSDL or SDL, and SLPs are generated through three converters referring to two knowledge databases. Three tests are conducted on the specifications described. The effectiveness of the CSCE is demonstrated by the results that the amount of SLP descriptions for five new practical services using the CSCE is reduced to less than about 20% in LSDL description, compared to C language description.

  • The Minimum Initial Marking Problem for Scheduling in Timed Petri Nets

    Toshimasa WATANABE  Takenobu TANIDA  Masahiro YAMAUCHI  Kenji ONAGA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1407-1421

    The subject of the paper is the minimum initial marking problem for scheduling in timed Petri net PN: given a vector X of nonnegative integers, a P-invariant Y of PN and a nonnegative integer π, find an initial marking M minimizing the value YtrM among those initial marking M such that there is a scheduling σ having the total completion time τ(σ)π with respect M , X and PN (a sequence of transitions, with the first transition firable on M , such that every transition t can fire prescribed number X(t) of times). The paper shows NP-hardness of the problem and proposes two approximation algorithms with their experimental evaluation.

  • Formal Design Verification of Sequential Machines Based on Symbolic Model Checking for Branching Time Regular Temporal Logic

    Kiyoharu HAMAGUCHI  Hiromi HIRAISHI  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1220-1229

    Recently, Burch et al. proposed symbolic model checking method to verify sequential machines formally. The method, which is based on logic function manipulation using binary decision diagram, can handle large sequential machines that cannot be handled by the conventional techniques. The expressive power of Computational Tree Logic (CTL), which was used by Burch et al., is not very powerful, for example, CTL cannot describe repetition of events. This papers shows an extension of the symbolic model checking algorithm to Branching time regular temporal logic (BRTL), which has been proposed by the authors as an improvement of CTL in terms of expressive power. The implemented verifier based on the proposed algorithm could verify behaviors of a microprocessor composed of approximately 1,600 gates and 68 flipflops.

  • Application of Al Technology to the Telecommunications User Support Software

    Hikaru YAGI  Masanobu FUJIOKA  Yasushi WAKAHARA  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    1061-1070

    In this paper, the software structure for telecommunication user support are discussed, and it is proposed to apply knowledge processing technology to the software. Capabilities of telecommunications networks are becoming quite complicated, and the number of service items and parameters which have to be selected and memorized will become too large for telecommunications end users to make full use of the network capabilities. As such, more effort should be focused on assisting telecommunications end users to use the network and providing user friendly human interfaces of the network. However, this kind of software has additional type of requirements other than those for protocol handling software and call control software, and the realization of such support software has not yet been fully studied. To realize such support software, this paper stressed the realization of the user-system interface. Especially identified in this paper are meaning-based interpretation of user inputs to permit the handling of synonyms and multivocations, and a method to access the database in the support system without consideration of its data schema. To satisfy these objectives, this paper has proposed that the application data should be represented in both a character string and a meaning representation, and that the thesauruses should have the attribute-value relation. In line with these studies, an experimental system called CAPRIS (CAlling PRocedure Instruction System) was developed. It is used to assist the calling party in a telecommunications network to find an appropriate contact point depending on the purpose of the communication. Implementation of CAPRIS is completed and it was confirmed that all the functions described in this paper were actually realized. Some functional experiments were performed on CAPRIS, and the system was concluded to realize satisfactory user-friendliness.

  • A Hierarchical Multi-Layer Global Router

    Masayuki HAYASHI  Hiroyoshi YAMAZAKI  Shuji TSUKIYAMA  Nobuyuki NISHIGUCHI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1294-1300

    We propose a hierarchical multi-layer global router for Sea-Of-Gates VLSI's, which is different from the conventional global routers, in that routing and layering are executed simultaneously. The main problems to be solved in the global routing for a multi-layer VLSI are which wire segments are laid out on upper layers and how they are connected to terminals located on lower layers. The main objective is to minimize the maximum of local congestions of all layers. We solve these problems in a hierarchical manner by routing from upper layers to lower layers.

  • A VLSI Processor Architecture for a Back-Propagation Accelerator

    Yoshio HIROSE  Hideaki ANBUTSU  Koichi YAMASHITA  Gensuke GOTO  

     
    PAPER-Application Specific Processors

      Vol:
    E75-C No:10
      Page(s):
    1223-1231

    This paper describes a VLSI processor architecture designed for a back-propagation accelerator. Three techniques are used to accelerate the simulation. The first is a multi-processor approach where a neural network simulation is suitable for parallel processing. By constructing a ring network using several processors, the simulation speed is multiplied by the number of the processors. The second technique is internal parallel processing. Each processor contains 4 multipliers and 4 ALUs that all work in parallel. The third technique is pipelining. The connections of eight functional units change according to the current stage of the back-propagation algorithm. Intermediate data is sent from one functional unit to another without being stored in extra registers and data is processed in a pipeline manner. The data is in 24-bit floating point format (18-bit mantissa and 6-bit oxponent). The chip has about 88,000 gates, including microcode ROM for processor control, the processor is designed using 0.8-µm CMOS gate arrays, and the estimated performance at 40 MHz is 20 million connection updates per second (MCUPS). For a ring network with 4 processors, performance can be enhanced up to 90 MCUPS.

  • Alternately-Activated Open Bitline Technique for High Density DRAMs

    Yasushi KUBOTA  Yasuaki IWASE  Katsuji IGUCHI  Junkou TAKAGI  Toru WATANABE  Keizo SAKIYAMA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:10
      Page(s):
    1259-1266

    An effective bitline technique for high density DRAMs is studies. The open-type bitline structure where the bitlines are activated alternately can decrease the bitline noises and the current dissipation in memory cell arrays. In spite of several disadvantages inherent to the open-type bitline structure, this technique is found to get the larger read-out signal than the conventional bitline configurations for the DRAMs of 64 Mb and beyond. The effectiveness is confirmed with the measurement of the test-chips. This technique is expected to be more efficient for DRAMs of higher density, where the contribution of the inter-bitline capacitance is increased.

  • A Fuzzy-Theoretic Timing Driven Placement Method

    Ze Cang GU  Shoichiro YAMADA  Kunio FUKUNAGA  Shojiro YONEDA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1280-1285

    A new algorithm for timing driven placement based on the fuzzy theory is proposed. In this method, the signal delay on the longest path, the chip area and the total wire length can be simultaneously minimized. Introducing the probability measures of fuzzy events, falling down into the local optimal solutions can be avoided. At first, we define the fuzzy placement relation using the graph distance matrix and fuzzy distance relation matrix, and we give a new placement method based on the fuzzy placement relation and the probability measures of fuzzy events. Secondly, we extend this placement method so as to apply to the timing driven placement problem by introducing a fuzzy membership functions which represent the signal delay on the longest path and the chip area. Finally, experimental results are shown to compare our method with one of the previous methods.

  • An Efficient Hypergraph Bisection Algorithm for Partitioning VLSI Circuits

    Yoko KAMIDOI  Shin'ichi WAKABAYASHI  Noriyoshi YOSHIDA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1272-1279

    This paper presents an efficient heuristic algorithm for min-cut bisection of weighted hypergraphs. The proposed algorithm is based on a heuristic algorithm proposed by Kahng, which was devised for non-weighted hypergraph bisection, adopting a non-weighted graph called intersection graph to represent a given hypergraph. In the proposed algorithm, instead of an intersection graph, a bipartite graph called netgraph is newly introduced to explicitly represent the weights of nodes of a hypergraph. Using the netgraph, it is easy to partition a weighted hypergraph into two hypergraphs with same size. Computation time of the proposed method is O(m2), where m is the number of nodes of a given hypergraph. Experimental results with real circuit data show that the proposed method produces better solutions in shorter computation time compared with existing methods.

  • A Test Case Generation Method for Black Box Testing of Concurrent Programs

    Noriyasu ARAKAWA  Terunao SONEOKA  

     
    PAPER-Communication Software

      Vol:
    E75-B No:10
      Page(s):
    1081-1089

    This paper proposes a test case generation method for testing concurrent programs as a black box. Typical applications are system testing for switching systems and inter-operability testing for OSI products. We adopt a two-step approach: first generate the control flow graph which represents global behaviors of a given concurrent program, and then apply conventional test case generation methods for the control flow graph. To generate a control flow graph without state space explosion, the black-box equivalence between system behaviors is introduced. The proposed algorithm generates a minimal control flow graph which consists of representatives of equivalence classes. Two practical techniques for the second step are discussed for a case study using a commercial digital PBX. The results show the feasibility of the proposed method.

  • Priority-List Scheduling in Timed Petri Nets

    Takenobu TANIDA  Toshimasa WATANABE  Masahiro YAMAUCHI  Kinji ONAGA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1394-1406

    The subject of the paper is to propose two approximation algorithms FM_SPLA, FM_DPLA for priority-list scheduling in timed Petri nets. Their capability is compared with that of existing algorithms SPLA, DPLA through experimental results, where SPLA and DPLA have previously been proposed by the authors.

  • A Petri-Net-Based Programming Environment and Its Design Methodology for Cooperating Discrete Event Systems

    Naoshi UCHIHIRA  Mikako ARAMI  Shinichi HONIDEN  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1335-1347

    This paper describes MENDELS ZONE, a Petri-net-based concurrent programming environment, which is especially suitable for cooperating discrete event systems. MENDELS ZONE adopts MENDEL net, which is a type of high level (hierarchical colored) Petri net. One of the characteristics of the MENDEL nets is a process-oriented hierarchy like CCS, which is different from the subnet-oriented hierarchy in the Jensen's hierarchical colored Petri net. In a process-oriented hierarchy, a hierarchical unit is a process, which is more natural for cooperating and decentralized discrete event control systems. This paper also proposes a design methodology for MENDEL nets. Although many Petri net tools have been proposed, most tools support only drawing, simulation, and analysis of Petri nets; few tools support the design methodology for Petri nets. While Petri nets are good final design documents easy to understand, analyzable, and executable it is often difficult to write Petri nets directly in an earlier design phase when the system structure is obscure. A proposed design methodology makes a designer to construct MENDEL nets systematically using causality matrices and temporal logic. Furthemore, constructed MENDEL nets can be automatically compiled into a concurrent programming language and executed on a parallel computer.

  • Petri Net Based Programming System for FMS

    Yoichi NAGAO  Hideaki OHTA  Hironobu URABE  Sadatoshi KUMAGAI  

     
    INVITED PAPER

      Vol:
    E75-A No:10
      Page(s):
    1326-1334

    This paper describes a programming system, K-NET for the development of control software for flexible manufacturing systems composed of robots, numerically-controlled machines, transfer machines and automatic storage/retrieval systems. K-NET is based on a high-level Petri net which makes it simple to express operational functions such as synchronization, interlock and concurrence in sequence control. Petri net in K-NET is colored one in which tokens have attributes, and timed one which can provide a notion of stochastic time. K-NET provides many kinds of boxes having specific functions, and gates specified the firing condition and the token flow control with IF-THEN rules. On the other hand, procedural language can be also used for information processing. K-NET can support all development stages including general design, detailed design, programming and testing. K-NET has an editor to input control specifications expressed with Petri net; a simulator to verify edited specifications; a generator to convert the net to C source programs for a computer or to ladder diagrams for a programmable controller; a reporter to print control specifications; and a monitor to display controller status in real-time. K-NET has been used in the development of control software for an automated guided vehicle system, and results show a 2/3rds cost-saving over development with conventional methods in which only procedural language is used.

  • Optimal Cycle Time and Facility Utilization of Production Systems Including Repetitive Process with Set-up Time Modelled by Timed Marked Graphs

    Masaki AKAZA  Dong-Ik LEE  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1385-1393

    A job shop system typically seen in flexible manufacturing systems (FMS) is a system composed of a set of machines and a various kind of jobs processed with the machines. A production system of semiconductor fabrication is an example of job shop systems, which has main features of repetitive processes of one part and set-up times required for machines processing different types of parts. On the other hand, timed Petri nets are used for modelling and analyzing a wide variety of discrete event systems. There are many applications of timed Petri nets to the scheduling problems of job shop systems. The performance evaluation and steady state behaviors are studied by using the maximum cycle time of timed marked graphs. The aim of this paper is to propose a new model for production systems including repetitive processes and set-up time requirements which enables the quantitative analysis of real time system performance. In job shop systems such as a semiconductor fabrication system, it takes considerable amount of set-up time to prepare different types of chemical reactions and the model should take account of a set-up time for each machine. We focus upon the relationship between facility utilization factor and production cycle time in the steady state. In the proposed model, the minimum total set-up time can be attained. Quantitative relationship between utilization factor and production cycle time is derived by using the proposed model. A utilization factor of a system satisfying a given limit of the cycle time is evaluated, and the improvement of the utilization factor is considered. Conversely, we consider the improvement of the cycle time of a system satisfying a given limit of utilization factor.

  • A New Array Architecture for 16 Mb DRAMs with Special Page Mode

    Masaki TSUKUDE  Tsukasa OISHI  Kazutami ARIMOTO  Hideto HIDAKA  Kazuyasu FUJISHIMA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:10
      Page(s):
    1267-1274

    An improved array architecture to realize fast access, low power dissipation, and wide operating margin, for the 16 Mbit DRAM is proposed. A high speed access is obtained by the fully embedded sense drive scheme for the RAS access time (tRAC), and the special page mode with the hierarchical I/O data bus lines and multi-purpose-register (MPR) for the column address access time (tCAA). A low power dissipation and wide operating margin are obtained by the improved twisted-bit-line (TBL) architecture with double dummy canceling. The 16 Mb DRAM using these architectures has 38 ns tRAC, 14 ns tCAA and 75 mA power dissipation at the typical condition.

  • Verification of Switching Software by Knowledge Processing Technology

    Mitsuaki KAKEMIZU  Yasuo IWAMI  Yoshiharu SATO  Shimmi HATTORI  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    1008-1014

    To develop highly reliable switching software efficiently, a more powerful computer-aided verification system is needed. In this paper, we present an object-oriented switching software verification system, focusing on the basic concept and verification method. The system consists of three basic functions: a model of the switching system, a simulation control mechanism, and a verification mechanism. We also give our evaluation of this system.

  • Optimization of Doppler Filters for Fluctuating Radar Targets

    Vincenzo ALOISIO  Antonio DI VITO  Gaspare GALATI  

     
    PAPER-Radio Communication

      Vol:
    E75-B No:10
      Page(s):
    1090-1104

    The detection problem of fluctuating radar targets in the presence of interference (noise and clutter) is considered; the assumed model for both target and clutter is a zero-mean stationary Gaussian random process with assigned power spectral densities. The pertaing optimum linear processor, namely the Optimized Filtering, is derived and its performance are evaluated in different operating conditions, including mismatching with the designed model. Finally, comparison with filtering techniques designed for targets with zero spectral width, i.e. the Moving Target Detector, are performed.

  • Diagnosis of Computer Systems by Stochastic Petri Nets Part (Application)

    Satoshi MORIGUCHI  Gerald S. SHEDLER  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1369-1377

    The pursuit of higher availability has resulted in the development of fault tolerant systems for many industries. However, system characteristics that can be perceived by the customer have never been diagnosed quantitatively. This paper considers the application of stochastic Petri nets with general firing times to modeling of a fault tolerant system and the use of discrete-event simulation methods for stochastic Petri nets to study the behavior of the system. The stochastic Petri net model incorporates factors that compose the system as well as those that accompany it, including RAS characteristics of products, personnel arrangements, and system management. By modeling the behavioral aspect of each factor, it is possible to diagnose a fault tolerant system quantitatively on the basis of customer impact.

  • A 1-K ECL Gate Array Implemented with Fully Self-Aligned AlGaAs/GaAs Heterojunction Bipolar Transistors

    Nobuyuki HAYAMA  Yuzuru TOMONOH  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1121-1126

    The paper describes the design considerations, fabrication process and performance of the newly developed 1-K ECL gate array implemented with fully self-aligned AlGaAs/GaAs hoterojunction bipolar transistors (HBTs). This gate array consists of 960 three-input OR/NOR ECL basic gates. It contains about 7,600 transistors in a chip area 8.15-mm8.45-mm. The basic (FI=FO=1, wiring length L=0-mm) and loaded (FI=FO=3, L=1-mm) gates exhibit delay times of 33-ps and 82-ps, respectively, with 8.5-mW/gate power dissipation. From the measured values, fan-in, fan-out and wiring delay times of 9-ps/FI, 7-ps/FO and 17-ps/mm are estimated, respectively. These results are in good agreement with the designed results obtained using "SPICE" simulation.

  • Behavioral Analysis and Performance Evaluation of a Shift Processing System by an Extended Stochastic Petri Net

    Qun JIN  Mitsuo KAMEI  Yoshio SUGASAWA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1378-1384

    Stochastic Petri Nets and Generalized Stochastic Petri Nets as well as other extensions to Stochastic Petri Nets have been widely applied as a model of asynchronous concurrent process, or as an aid to analyze or design concurrent systems. This paper presents an Extended Stochastic Petri Net model for a shift processing system in which three kinds of sink may occur and an arbitrary time distribution is incorporated, provides an analytical method based on a Markov renewal process with some non-regeneration points to clarify the probabilistic behavior of the system, and finally evaluates the performance of the system with numerical values.

25961-25980hit(26286hit)