The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

901-920hit(5768hit)

  • Dynamic Heterogeneous Particle Swarm Optimization

    Shiqin YANG  Yuji SATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/11/02
      Vol:
    E100-D No:2
      Page(s):
    247-255

    Recently, the Static Heterogeneous Particle Swarm Optimization (SHPSO) has been studied by more and more researchers. In SHPSO, the different search behaviours assigned to particles during initialization do not change during the search process. As a consequence of this, the inappropriate population size of exploratory particles could leave the SHPSO with great difficulties of escaping local optima. This motivated our attempt to improve the performance of SHPSO by introducing the dynamic heterogeneity. The self-adaptive heterogeneity is able to alter its heterogeneous structure according to some events caused by the behaviour of the swarm. The proposed triggering events are confirmed by keeping track of the frequency of the unchanged global best position (pg) for a number of iterations. This information is then used to select a new heterogeneous structure when pg is considered stagnant. According to the different types of heterogeneity, DHPSO-d and DHPSO-p are proposed in this paper. In, particles dynamically use different rules for updating their position when the triggering events are confirmed. In DHPSO-p, a global gbest model and a pairwise connection model are automatically selected by the triggering configuration. In order to investigate the scalability of and DHPSO-p, a series of experiments with four state-of-the-art algorithms are performed on ten well-known optimization problems. The scalability analysis of and DHPSO-p reveals that the dynamic self-adaptive heterogeneous structure is able to address the exploration-exploitation trade-off problem in PSO, and provide the excellent optimal solution of a problem simultaneously.

  • Evaluation of Device Parameters for Membrane Lasers on Si Fabricated with Active-Layer Bonding Followed by Epitaxial Growth

    Takuro FUJII  Koji TAKEDA  Erina KANNO  Koichi HASEBE  Hidetaka NISHI  Tsuyoshi YAMAMOTO  Takaaki KAKITSUKA  Shinji MATSUO  

     
    PAPER

      Vol:
    E100-C No:2
      Page(s):
    196-203

    We have developed membrane distributed Bragg reflector (DBR) lasers on thermally oxidized Si substrate (SiO2/Si substrate) to evaluate the parameters of the on-Si lasers we have been developing. The lasers have InGaAsP-based multi-quantum wells (MQWs) grown on InP substrate. We used direct bonding to transfer this active epitaxial layer to SiO2/Si substrate, followed by epitaxial growth of InP to fabricate a buried-heterostructure (BH) on Si. The lateral p-i-n structure was formed by thermal diffusion of Zn and ion implantation of Si. For the purpose of evaluating laser parameters such as internal quantum efficiency and internal loss, we fabricated long-cavity lasers that have 200- to 600-µm-long active regions. The fabricated DBR lasers exhibit threshold currents of 1.7, 2.1, 2.8, and 3.7mA for active-region lengths of 200, 300, 400, and 600µm, respectively. The differential quantum efficiency also depends on active-region length. In addition, the laser characteristics depend on the distance between active region and p-doped region. We evaluated the internal loss to be 10.2cm-1 and internal quantum efficiency to be 32.4% with appropriate doping profile.

  • Wavelength Analysis Using Equivalent Circuits in a Fast and Slow Wave Waffle-Iron Ridge Guide

    Hideki KIRINO  Kazuhiro HONDA  Kun LI  Koichi OGAWA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    219-226

    In this paper we use equivalent circuits to analyze the wavelengths in a Fast and Slow wave Waffle-iron Ridge Guide (FS-WRG). An equivalent circuit for the transverse direction is employed and the transverse resonance method is used to determine the fast wave wavelength. Another equivalent circuit, for the inserted series reactance in the waveguide, is employed for the fast and slow wave wavelength. We also discuss the physical system that determines the wavelengths and the accuracy of this analysis by comparing the wavelengths with those calculated by EM-simulation. Furthermore, we demonstrate use of the results obtained in designing an array antenna.

  • A Hardware Efficient Multiple-Stream Pipeline FFT Processor for MIMO-OFDM Systems

    Kai-Feng XIA  Bin WU  Tao XIONG  Tian-Chun YE  Cheng-Ying CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:2
      Page(s):
    592-601

    In this paper, a hardware efficient design methodology for a configurable-point multiple-stream pipeline FFT processor is presented. We first compared the memory and arithmetic components of different pipeline FFT architectures, and obtained the conclusion that MDF architecture is more hardware efficient than MDC for the overall processor. Then, in order to reduce the computational complexity, a binary-tree representation was adopted to analyze the decomposition algorithm. Consequently, the coefficient multiplications are minimized among all the decomposition probabilities. In addition, an efficient output reorder circuit was designed for the multiple-stream architecture. An 128∼2048 point 4-stream FFT processor in LTE system was designed in SMIC 55nm technology for evaluation. It owns 1.09mm2 core area with 82.6mW power consumption at 122.88MHz clock frequency.

  • Efficient Selection of Users' Pair in Cognitive Radio Network to Maximize Throughput Using Simultaneous Transmit-Sense Approach

    Muhammad Sajjad KHAN  Muhammad USMAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/01
      Vol:
    E100-B No:2
      Page(s):
    380-389

    Protection of the licensed user (LU) and utilization of the spectrum are the most important goals in cognitive radio networks. To achieve the first goal, a cognitive user (CU) is required to sense for a longer time period, but this adversely affects the second goal, i.e., throughput or utilization of the network, because of the reduced time left for transmission in a time slot. This tradeoff can be controlled by simultaneous sensing and data transmission for the whole frame duration. However, increasing the sensing time to the frame duration consumes more energy. We propose a new frame structure in this paper, in which transmission is done for the whole frame duration whereas sensing is performed only until the required detection probability is satisfied. This means the CU is not required to perform sensing for the whole frame duration, and thus, conserves some energy by sensing for a smaller duration. With the proposed frame structure, throughput of all the CUs is estimated for the frame and, based on the estimated throughput and consumed energy in sensing and transmission, the energy efficient pair of CUs (transmitter and receiver) that maximizes system throughput by consuming less energy, is selected for a time slot. The selected CUs transmits data for the whole time slot, whereas sensing is performed only for certain duration. The performance improvement of the proposed scheme is demonstrated through simulations by comparing it with existing schemes.

  • Design of Miniaturized and Bandwidth-Enhanced Implantable Antenna on Dielectric/Ferrite Substrate for Wireless Biotelemetry

    Jae-Ho LEE  Dong-Wook SEO  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    227-233

    A miniaturized and bandwidth-enhanced implantable antenna is designed for wireless biotelemetry in the medical implantable communications service (MICS) frequency band of 402-405MHz. To reduce the antenna size and enhance the available bandwidth with regard to the reflection coefficients, a meandered planar inverted-F antenna (PIFA) structure is adopted on a dielectric/ferrite substrate which is an artificial magneto-dielectric material. The potential of the proposed antenna for the intended applications is verified through prototype fabrication and measurement with a 2/3 human muscle phantom. Good agreement is observed between the simulation and measurement in terms of resonant characteristics and gain radiation patterns; the bandwidth is enhanced in comparison with that of the ferrite-removed antenna, and antenna gain of -27.7dB is obtained in the measurement. Allowances are made for probable fabrication inaccuracies and practical operating environments. An analysis of 1-g SAR distribution is conducted to confirm compliance with the specific absorption rate limitation (1.6W/kg) of the American National Standards Institute (ANSI).

  • Integrated-Circuit Approaches to THz Communications: Challenges, Advances, and Future Prospects

    Minoru FUJISHIMA  Shuhei AMAKAWA  

     
    INVITED PAPER

      Vol:
    E100-A No:2
      Page(s):
    516-523

    Frequencies around 300GHz offer extremely broad atmospheric transmission window with relatively low losses of up to 10dB/km and can be regarded as the ultimate platform for ultrahigh-speed wireless communications with near-fiber-optic data rates. This paper reviews technical challenges and recent advances in integrated circuits targeted at communications using these and nearby “terahertz (THz)” frequencies. Possible new applications of THz wireless links that are hard to realize by other means are also discussed.

  • On the Interference Alignment Designs for Secure Multiuser MIMO Systems

    Kha HOANG HA  Thanh TUNG VU  Trung QUANG DUONG  Nguyen-Son VO  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:2
      Page(s):
    670-679

    In this paper, we propose two secure multiuser multiple-input multiple-output (MIMO) transmission approaches based on interference alignment (IA) in the presence of an eavesdropper. To deal with the information leakage to the eavesdropper as well as the interference signals from undesired transmitters (Txs) at desired receivers (Rxs), our approaches aim to design the transmit precoding and receive subspace matrices to minimize both the total inter-main-link interference and the wiretapped signals (WSs). The first proposed IA scheme focuses on aligning the WSs into proper subspaces while the second one imposes a new structure on the precoding matrices to force the WSs to zero. In each proposed IA scheme, the precoding matrices and the receive subspaces at the legitimate users are alternatively selected to minimize the cost function of a convex optimization problem for every iteration. We provide the feasible conditions and the proofs of convergence for both IA approaches. The simulation results indicate that our two IA approaches outperform the conventional IA algorithm in terms of the average secrecy sum rate.

  • Direction Finding of Noncircular Coherently Distributed Sources for Centrosymmetric Array

    Zheng DAI  Weimin SU  Hong GU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:2
      Page(s):
    722-725

    In this letter, we propose an algorithm for the 2-dimensional (2D) direction of arrival (DOA) estimation of noncircular coherently distributed (CD) sources using the centrosymmetric array. For a centrosymmetric array, we prove that the angular signal distributed weight (ASDW) vector of the CD source has a symmetric structure. To estimate azimuth and elevation angle, we perform a 2D searching based on generalized ESPRIT algorithm. The significant superiority of the proposed algorithm is that, the 2D central directions of CD sources can be found independently of deterministic angular distributed function (DADF). Simulations results verify the efficacy of the proposed algorithm.

  • Path Loss Model for Outdoor-to-Indoor Corridor Up to 40GHz Band in Microcell Environments

    Minoru INOMATA  Motoharu SASAKI  Wataru YAMADA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Nobutaka OMAKI  Koshiro KITAO  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    242-251

    This paper proposed that a path loss model for outdoor-to-indoor corridor is presented to construct next generation mobile communication systems. The proposed model covers the frequency range of millimeter wave bands up to 40GHz and provides three dimensional incident angle characteristics. Analysis of path loss characteristics is conducted by ray tracing. We clarify that the paths reflected multiple times between the external walls of buildings and then diffracted into one of the buildings are dominant. Moreover, we also clarify how the paths affect the path loss dependence on frequency and three dimensional incident angle. Therefore, by taking these dependencies into consideration, the proposed model decreases the root mean square errors of prediction results to within about 2 to 6dB in bands up to 40GHz.

  • Bufferbloat Avoidance with Frame-Dropping Threshold Notification in Ring Aggregation Networks

    Yu NAKAYAMA  Kaoru SEZAKI  

     
    PAPER-Network

      Pubricized:
    2016/08/22
      Vol:
    E100-B No:2
      Page(s):
    313-322

    In recent years, the reduced cost and increased capacity of memory have resulted in a growing number of buffers in switches and routers. Consequently, today's networks suffer from bufferbloat, a term that refers to excess frame buffering resulting in high latency, high jitter, and low throughput. Although ring aggregation is an efficient topology for forwarding traffic from multiple, widely deployed user nodes to a core network, a fairness scheme is needed to achieve throughput fairness and avoid bufferbloat, because frames are forwarded along ring nodes. N Rate N+1 Color Marking (NRN+1CM) was proposed to achieve per-flow fairness in ring aggregation networks. The key idea of NRN+1CM is to assign a color that indicates the dropping priority of a frame according to the flow-input rate. When congestion occurs, frames are selectively discarded based on their color and the frame-dropping threshold. Through the notification process for the frame-dropping threshold, frames are discarded at upstream nodes in advance, avoiding the accumulation of a queuing delay. The performance of NRN+1CM was analyzed theoretically and evaluated with computer simulations. However, its ability to avoid bufferbloat has not yet been proven mathematically. This paper uses an M(n)/M/1/K queue model to demonstrate how bufferbloat is avoided with NRN+1CM's frame-dropping threshold-notification process. The M(n)/M/1/K queue is an M/M/1/K queuing system with balking. The state probabilities and average queue size of each ring node were calculated with the model, proving that the average queue size is suppressed in several frames, but not in the most congested queue. Computer simulation results confirm the validity of the queue model. Consequently, it was logically deducted from the proposed M(n)/M/1/K model that bufferbloat is successfully avoided with NRN+1CM independent of the network conditions including the number of nodes, buffer sizes, and the number and types of flows.

  • A Weil Pairing on a Family of Genus 2 Hyperelliptic Curves with Efficiently Computable Automorphisms

    Masahiro ISHII  Atsuo INOMATA  Kazutoshi FUJIKAWA  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    62-72

    In this paper, we provided a new variant of Weil pairing on a family of genus 2 curves with the efficiently computable automorphism. Our pairing can be considered as a generalization of the omega pairing given by Zhao et al. We also report the algebraic cost estimation of our pairing. We then show that our pairing is more efficient than the variant of Tate pairing with the automorphism given by Fan et al. Furthermore, we show that our pairing is slightly better than the twisted Ate pairing on Kawazoe-Takahashi curve at the 192-bit security level.

  • Blind Channel Estimation by EM Algorithm for OFDM Systems

    Hirokazu ABE  Masahiro FUJII  Takanori IWAMATSU  Hiroyuki HATANO  Atsushi ITO  Yu WATANABE  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    210-218

    It is necessary to estimate channel state information coherently to equalize the received signal in wireless communication systems. The pilot symbol, known at the receiver, aided channel estimator degrades the transmission efficiency because it requires the signal spaces and the energy for the transmission. In this paper, we assume a fixed wireless communication system in line of sight slowly varying channel and propose a new blind channel estimation method without help from the pilot symbol for Orthogonal Frequency Division Multiplexing systems. The proposed estimator makes use of the Expectation-Maximization algorithm and the correlation property among the channel frequency responses by considering the assumed channel environment. By computer simulations, we show that the proposed estimator can asymptotically achieve bit error rate performance by using the ideal channel estimation.

  • Designing and Implementing a Diversity Policy for Intrusion-Tolerant Systems

    Seondong HEO  Soojin LEE  Bumsoon JANG  Hyunsoo YOON  

     
    PAPER-Dependable Computing

      Pubricized:
    2016/09/29
      Vol:
    E100-D No:1
      Page(s):
    118-129

    Research on intrusion-tolerant systems (ITSs) is being conducted to protect critical systems which provide useful information services. To provide services reliably, these critical systems must not have even a single point of failure (SPOF). Therefore, most ITSs employ redundant components to eliminate the SPOF problem and improve system reliability. However, systems that include identical components have common vulnerabilities that can be exploited to attack the servers. Attackers prefer to exploit these common vulnerabilities rather than general vulnerabilities because the former might provide an opportunity to compromise several servers. In this study, we analyze software vulnerability data from the National Vulnerability Database (NVD). Based on the analysis results, we present a scheme that finds software combinations that minimize the risk of common vulnerabilities. We implement this scheme with CSIM20, and simulation results prove that the proposed scheme is appropriate for a recovery-based intrusion tolerant architecture.

  • Adaptive Control for LED-Based Underwater Wireless Communications Using Visible Light

    Xin LIN  

     
    INVITED PAPER

      Vol:
    E100-A No:1
      Page(s):
    185-193

    One of the major subjects for marine resources development and information processing is how to realize underwater short-range and large-capacity data transmissions. The acoustic wave is an effective carrier and has been used for underwater data transmissions because it has lower attenuation in seawater than the radio wave, and has average propagation distance of about 10km or more. However, along with the imaging of transmission data, the inherent low speed of the acoustic wave makes it cannot and become an ideal carrier for high-speed and large-capacity communications. On the other hand, visible-light wave with wavelength of 400nm-650nm is an ideal carrier, which has received much attention. Its attractive features are high transparency and low attenuation rate in underwater, easily control the propagation direction and range by the visibility, and high data rate and capacity, making it excellent for application in underwater wireless communications. However, visible-light waves in the seawater have the spectral attenuation characteristics due to different marine environment. Therefore, in this paper an underwater optical wireless communication method with adaptation seawater function is considered for seawater turbidity of the spatio-temporal change. Two crucial components in the underwater optical wireless communication system, the light wavelength and the modulation method are controlled using wavelength- and modulation-adaptation techniques, respectively. The effectiveness of the method of the adaptation wavelength is demonstrated in underwater optical image transmissions.

  • Detecting Motor Learning-Related fNIRS Activity by Applying Removal of Systemic Interferences

    Isao NAMBU  Takahiro IMAI  Shota SAITO  Takanori SATO  Yasuhiro WADA  

     
    LETTER-Biological Engineering

      Pubricized:
    2016/10/04
      Vol:
    E100-D No:1
      Page(s):
    242-245

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique, suitable for measurement during motor learning. However, effects of contamination by systemic artifacts derived from the scalp layer on learning-related fNIRS signals remain unclear. Here we used fNIRS to measure activity of sensorimotor regions while participants performed a visuomotor task. The comparison of results using a general linear model with and without systemic artifact removal shows that systemic artifact removal can improve detection of learning-related activity in sensorimotor regions, suggesting the importance of removal of systemic artifacts on learning-related cerebral activity.

  • Efficient Data Persistence Scheme Based on Compressive Sensing in Wireless Sensor Networks

    Bo KONG  Gengxin ZHANG  Dongming BIAN  Hui TIAN  

     
    PAPER-Network

      Pubricized:
    2016/07/12
      Vol:
    E100-B No:1
      Page(s):
    86-97

    This paper investigates the data persistence problem with compressive sensing (CS) in wireless sensor networks (WSNs) where the sensed readings should be temporarily stored among the entire network in a distributed manner until gathered by a mobile sink. Since there is an energy-performance tradeoff, conventional CS-based schemes only focus on reducing the energy consumption or improving the CS construction performance. In this paper, we propose an efficient Compressive Sensing based Data Persistence (CSDP) scheme to achieve the optimum balance between energy consumption and reconstruction performance. Unlike most existing CS-based schemes which require packets visiting the entire network to reach the equilibrium distribution, in our proposed scheme information exchange is only performed among neighboring nodes. Therefore, such an approach will result in a non-uniform distribution of measurements, and the CS measurement matrix depends heavily on the node degree. The CS reconstruction performance and energy consumption are analyzed. Simulation results confirm that the proposed CSDP scheme consumes the least energy and computational overheads compared with other representative schemes, while almost without sacrificing the CS reconstruction performance.

  • Video Data Modeling Using Sequential Correspondence Hierarchical Dirichlet Processes

    Jianfei XUE  Koji EGUCHI  

     
    PAPER

      Pubricized:
    2016/10/07
      Vol:
    E100-D No:1
      Page(s):
    33-41

    Video data mining based on topic models as an emerging technique recently has become a very popular research topic. In this paper, we present a novel topic model named sequential correspondence hierarchical Dirichlet processes (Seq-cHDP) to learn the hidden structure within video data. The Seq-cHDP model can be deemed as an extended hierarchical Dirichlet processes (HDP) model containing two important features: one is the time-dependency mechanism that connects neighboring video frames on the basis of a time dependent Markovian assumption, and the other is the correspondence mechanism that provides a solution for dealing with the multimodal data such as the mixture of visual words and speech words extracted from video files. A cascaded Gibbs sampling method is applied for implementing the inference task of Seq-cHDP. We present a comprehensive evaluation for Seq-cHDP through experimentation and finally demonstrate that Seq-cHDP outperforms other baseline models.

  • Delay-Tolerable Contents Offloading via Vehicular Caching Overlaid with Cellular Networks

    Byoung-Yoon MIN  Wonkwang SHIN  Dong Ku KIM  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:1
      Page(s):
    283-293

    Wireless caching is one of the promising technologies to mitigate the traffic burden of cellular networks and the large cost of deploying a higher volume of wired backhaul by introducing caching storage. In the manner of “cutting” wired equipments, all types of vehicles can be readily leveraged as serving access points with caching storage, where their moving nature should be taken into account to improve latency and data throughput. In this paper, we consider a mobility-aware vehicular caching which has a role in offloading delay-tolerable contents from cellular networks. We first clarify the influence of mobility in cellular caching networks, then set the mobility-aware optimization problem of vehicular caching to carry on delay-tolerable contents. Trace-driven numerical results based on rural and urban topographies show that, in presence of individual demand for delay-tolerable contents, the proposed vehicular caching scheme enhances the quality-of-service (QoS) (maximally twofold) relying on the contents delivery being centrally or distributedly controlled.

  • Optimizing Video Delivery for Enhancing User Experience in Wireless Networks

    Jongwon YOON  

     
    PAPER-Network

      Pubricized:
    2016/08/04
      Vol:
    E100-B No:1
      Page(s):
    131-139

    With the proliferation of hand-held devices in recent years, mobile video streaming has become an extremely popular application. However, Internet video streaming to mobile devices faces several problems, such as unstable connections, long latency, high jitter, etc. We present a system, OptVid, which enhances the user's experiences of video streaming service on cellular networks. OptVid takes the user's profile and provides seamless adaptive bitrate streaming by leveraging the video transcoding solution. It provides very agile bitrate adaptation, especially in the mobile scenario where the wireless channel is not stable. We prototype video transcoding on a WiMAX testbed to bridge the gap between the wireless channel capacity and the video quality. Our evaluations reveal that OptVid provides better user experience than conventional schemes in terms of PSNR, video stalls, and buffering time. OptVid does not require any additional storage since it transcodes videos on-the-fly upon receiving requests and delivers them directly to the client.

901-920hit(5768hit)