The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

1001-1020hit(5768hit)

  • Fairness Improvement of Multiple-Bottleneck Flow in Data Center Networks

    Kenta MATSUSHIMA  Kouji HIRATA  Miki YAMAMOTO  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1445-1454

    Quantized congestion notification (QCN), discussed in IEEE 802.1Qau, is one of the most promising Layer 2 congestion control methods for data center networks. Because data center networks have fundamentally symmetric structures and links are designed to have high link utilization, data center flows often pass through multiple bottleneck links. QCN reduces its transmission rate in a probabilistic manner with each congestion notification feedback reception, which might cause excessive regulation of the transmission rate in a multiple-bottleneck case because each bottleneck causes congestion feedbacks. We have already proposed QCN with bottleneck selection (QCN/BS) for multicast communications in data center networks. Although QCN/BS was originally proposed for multicast communications, it can also be applied to unicast communications with multiple bottleneck points. QCN/BS calculates the congestion level for each switch based on feedback from the switch and adjusts its transmission rate to the worst congestion level. In this paper, we preliminarily evaluate QCN/BS in unicast communications with multiple tandem bottleneck points. Our preliminary evaluation reveals that QCN/BS can resolve the excessive rate regulation problem of QCN but has new fairness problems for long-hop flows. To resolve this, we propose a new algorithm that integrates QCN/BS and our already proposed Adaptive BC_LIMIT. In Adaptive BC_LIMIT, the opportunities for rate increase are almost the same for all flows even if their transmission rates differ, enabling an accelerated convergence of fair rate allocation among flows sharing a bottleneck link. The integrated algorithm is the first congestion control mechanism that takes into account unicast flows passing through multiple tandem bottleneck points based on QCN. Furthermore, it does not require any modifications of switches used in QCN. Our simulation results show that our proposed integration of QCN/BS and Adaptive BC_LIMIT significantly mitigates the fairness problem for unicast communications with multiple bottleneck points in data center networks.

  • RTCO: Reliable Tracking for Continuous Objects Using Redundant Boundary Information in Wireless Sensor Networks

    Sang-Wan KIM  Yongbin YIM  Hosung PARK  Ki-Dong NAM  Sang-Ha KIM  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1464-1480

    Energy-efficient tracking of continuous objects such as fluids, gases, and wild fires is one of the important challenging issues in wireless sensor networks. Many studies have focused on electing fewer nodes to report the boundary information of continuous objects for energy saving. However, this approach of using few reporting packets is very sensitive to packet loss. Many applications based on continuous objects tracking require timely and precise boundary information due to the danger posed by the objects. When transmission of reporting packets fails, applications are unable to track the boundary reliably and a delay is imposed to recover. The transmission failure can fatally degrade application performance. Thus, it is necessary to consider just-in-time recovery for reliable continuous object tracking. Nevertheless, most schemes did not consider the reliable tracking to handle the situation that packet loss happen. Recently, a scheme called I-COD with retransmission was proposed to recover lost packets but it leads to increasing both the energy consumption and the tracking latency owing to the retransmission. Thus, we propose a reliable tracking scheme that uses fast recovery with the redundant boundary information to track continuous objects in real-time and energy-efficiently. In the proposed scheme, neighbor nodes of boundary nodes gather the boundary information in duplicate and report the redundant boundary information. Then the sink node can recover the lost packets fast by using the redundant boundary information. The proposed scheme provides the reliable tracking with low latency and no retransmissions. In addition, the proposed scheme saves the energy by electing fewer nodes to report the boundary information and performing the recovery without retransmissions. Our simulation results show that the proposed scheme provides the energy-efficient and reliable tracking in real-time for the continuous objects.

  • Energy Efficient Power Control and Resource Allocation in Downlink OFDMA HetNets with Cross-Tier Interference Constraint

    Guodong ZHANG  Wei HENG  Jinming HU  Tian LIANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:7
      Page(s):
    1599-1608

    Heterogeneous network (HetNet) is now considered to be a promising technique for enhancing the coverage and reducing the transmit power consumption of the next 5G system. Deploying small cells such as femtocells in the current macrocell networks achieves great spatial reuse at the cost of severe cross-tier interference from concurrent transmission. In this situation, two novel energy efficient power control and resource allocation schemes in terms of energy efficiency (EE)-fairness and EE-maximum, respectively, are investigated in this paper. In the EE-fairness scheme, we aim to maximize the minimum EE of the femtocell base stations (FBSs). Generalized Dinkelbach's algorithm (GDA) is utilized to tackle this optimization problem and a distributed algorithm is proposed to solve the subproblem in GDA with limited intercell coordination, in which only a few scalars are shared among FBSs. In the EE-maximum scheme, we aim to maximize the global EE of all femtocells which is defined as the aggregate capacity over the aggregate power consumption in the femtocell networks. Leveraged by means of the lower-bound of logarithmic function, a centralized algorithm with limited computational complexity is proposed to solve the global EE maximization problem. Simulation results show that the proposed algorithms outperform previous schemes in terms of the minimum EE, fairness and global EE.

  • Fast Estimation of Field in the Shadow Zone for Finite Cylindrical Structures by Modified Edge Representation (MER) in Compact Range Communication

    Maifuz ALI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1541-1549

    The 60 GHz band compact-range communication is very promising for short-time, short distance communication. Unfortunately, due to the short wavelengths in this frequency band the shadowing effects caused by human bodies, furniture, etc are severe and need to be modeled properly. The numerical methods like the finite-difference time-domain method (FDTD), the finite-element method (FEM), the method of moments (MoM) are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Ray-based approaches like the geometrical theory of diffraction (GTD), uniform geometrical theory of diffraction (UTD), uniform asymptotic theory of diffraction (UAT) are effective and popular solutions but suffer from computation of corner-diffracted field, field at the caustics. Fresnel zone number (FZN) adopted modified edge representation (MER) equivalent edge current (EEC) is an accurate and fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts distances, rather than the angles used in GTD, UTD or UAT but still provides uniform and highly accurate fields everywhere including geometrical boundaries. Previous work verified this method for planar scatterers. In this work, FZN MER EEC is used to compute field distribution in the millimeter-wave compact range communication in the presence of three dimensional scatterers, where shadowing effects rather than multi-path dominate the radio environments. First, circular cylinder is disintegrated into rectangular plate and circular disks and then FZN MER is applied along with geodesic path loss. The dipole wave scattering from perfectly conducting circular cylinder is discussed as numerical examples.

  • Design and Comparison of Immersive Gesture Interfaces for HMD Based Virtual World Navigation

    Bong-Soo SOHN  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/04/05
      Vol:
    E99-D No:7
      Page(s):
    1957-1960

    Mass-market head mounted displays (HMDs) are currently attracting a wide interest from consumers because they allow immersive virtual reality (VR) experiences at an affordable cost. Flying over a virtual environment is a common application of HMD. However, conventional keyboard- or mouse-based interfaces decrease the level of immersion. From this motivation, we design three types of immersive gesture interfaces (bird, superman, and hand) for the flyover navigation. A Kinect depth camera is used to recognize each gesture by extracting and analyzing user's body skeletons. We evaluate the usability of each interface through a user study. As a result, we analyze the advantages and disadvantages of each interface, and demonstrate that our gesture interfaces are preferable for obtaining a high level of immersion and fun in an HMD based VR environment.

  • Real-Time Hardware Implementation of a Sound Recognition System with In-Field Learning

    Mauricio KUGLER  Teemu TOSSAVAINEN  Miku NAKATSU  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1885-1894

    The development of assistive devices for automated sound recognition is an important field of research and has been receiving increased attention. However, there are still very few methods specifically developed for identifying environmental sounds. The majority of the existing approaches try to adapt speech recognition techniques for the task, usually incurring high computational complexity. This paper proposes a sound recognition method dedicated to environmental sounds, designed with its main focus on embedded applications. The pre-processing stage is loosely based on the human hearing system, while a robust set of binary features permits a simple k-NN classifier to be used. This gives the system the capability of in-field learning, by which new sounds can be simply added to the reference set in real-time, greatly improving its usability. The system was implemented in an FPGA based platform, developed in-house specifically for this application. The design of the proposed method took into consideration several restrictions imposed by the hardware, such as limited computing power and memory, and supports up to 12 reference sounds of around 5.3 s each. Experimental results were performed in a database of 29 sounds. Sensitivity and specificity were evaluated over several random subsets of these signals. The obtained values for sensitivity and specificity, without additional noise, were, respectively, 0.957 and 0.918. With the addition of +6 dB of pink noise, sensitivity and specificity were 0.822 and 0.942, respectively. The in-field learning strategy presented no significant change in sensitivity and a total decrease of 5.4% in specificity when progressively increasing the number of reference sounds from 1 to 9 under noisy conditions. The minimal signal-to-noise ration required by the prototype to correctly recognize sounds was between -8 dB and 3 dB. These results show that the proposed method and implementation have great potential for several real life applications.

  • A Proof of Turyn's Conjecture: Nonexistence of Circulant Hadamard Matrices for Order Greater than Four

    Yoshimasa OH-HASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:7
      Page(s):
    1395-1407

    Biphase periodic sequences having elements +1 or -1 with the two-level autocorrelation function are desirable in communications and radars. However, in case of the biphase orthogonal periodic sequences, Turyn has conjectured that there exist only sequences with period 4, i.e., there exist the circulant Hadamard matrices for order 4 only. In this paper, it is described that the conjecture is proved to be true by means of the isomorphic mapping, the Chinese remainder theorem, the linear algebra, etc.

  • Power Aware Routing Protocols in Wireless Sensor Network

    Mohammed ALSULTAN  Kasim OZTOPRAK  Reza HASSANPOUR  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1481-1491

    Wireless Sensor Networks (WSNs) have gained importance with a rapid growth in their applications during the past decades. There has also been a rise in the need for energy-efficient and scalable routing along with the data aggregation protocols for the large scale deployments of sensor networks. The traditional routing algorithms suffer from drawbacks such as the presence of one hop long distance data transmissions, very large or very small clusters within a network at the same moment, over-accumulated energy consumption within the cluster-heads (CHs) etc. The lifetime of WSNs is also decreased due to these drawbacks. To overcome them, we have proposed a new method for the Multi-Hop, Far-Zone and Load-Balancing Hierarchical-Based Routing Algorithm for Wireless Sensor Network (MFLHA). Various improvements have been brought forward by MFLHA. The first contribution of the proposed method is the existence of a large probability for the nodes with higher energy to become the CH through the introduction of the energy decision condition and energy-weighted factor within the electing threshold of the CH. Secondly, MFLHA forms a Far-Zone, which is defined as a locus where the sensors can reach the CH with an energy less than a threshold. Finally, the energy consumption by CHs is reduced by the introduction of a minimum energy cost method called the Multi-Hop Inter-Cluster routing algorithm. Our experimental results indicate that MFLHA has the ability to balance the network energy consumption effectively as well as extend the lifetime of the networks. The proposed method outperforms the competitors especially in the middle range distances.

  • A Study on Single Polarization Guidance in Photonic Band Gap Fiber with Anisotropic Lattice of Circular Air Holes

    Kazuki ICHIKAWA  Zejun ZHANG  Yasuhide TSUJI  Masashi EGUCHI  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    774-779

    We propose a novel single polarization photonic band gap fiber (SP-PBGF) with an anisotropic air hole lattice in the core. An SP-PBGF with an elliptical air hole lattice in the core recently proposed can easily realize SP guidance utilizing the large difference of cutoff frequency for the x- and y-polarized modes. In this paper, in order to achieve SP guidance based on the same principle of this PBGF, we utilize an anisotropic lattice of circular air holes instead of elliptical air holes to ease the fabrication difficulty. After investigating the influence of the structural parameters on SP guidance, it is numerically demonstrated that the designed SP-PBGF has 381 nm SP operating band.

  • Transmission Properties of Electromagnetic Wave in Pre-Cantor Bar: Scaling and Double-Exponetiality

    Ryota SATO  Keimei KAINO  Jun SONODA  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    801-804

    Pre-Cantor bar, the one-dimensional fractal media, consists of two kinds of materials. Using the transmission-line theory we will explain the double-exponential behavior of the minimum of the transmittance as a function of the stage number n, and obtain formulae of two kinds of scaling behaviors of the transmittance. From numerical calculations for n=1 to 5 we will find that the maximum of field amplitudes of resonance which increases double-exponentially with n is well estimated by the theoretical upper bound. We will show that after sorting field amplitudes for resonance frequencies of the 5th stage their distribution is a staircase function of the index.

  • Survivable Grouped Routing Optical Networks with Dedicated Path Protection

    Hiroshi HASEGAWA  Yojiro MORI  Ken-ichi SATO  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1435-1444

    A novel resilient coarse granularity optical routing network architecture that adopts finely granular protection and finely granular add/drop is presented. The routing scheme defines optical pipes such that multiple optical paths can be carried by each pipe and can be dropped or added at any node on the route of a pipe. The routing scheme also makes it possible to enhance frequency utilization within pipes, by denser path packing in the frequency domain, as we recently verified. We develop a static network design algorithm that simultaneously realizes the independence of working and backup paths and pipe location optimization to efficiently carry these paths. The design algorithm first sequentially accommodates optical paths into the network, then tries to eliminate sparsely utilized fibers and iteratively optimizes frequency slot/wavelength assignment in each coarse granular pipe so as to limit the impairment caused by dropping the optical paths adjacent in the frequency domain. Numerical experiments elucidate that the number of fibers in a network can be reduced by up to 20% for 400Gbps channels without any modification in hardware.

  • Novel Design of Dual-Band Reconfigurable Dipole Antenna Using Lumped and Distributed Elements

    Shoichi ONODERA  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1550-1557

    A frequency-reconfigurable dipole antenna, whose dual resonant frequencies are independently controlled, is introduced. The antenna's conductor consists of radiating conductors, lumped and distributed elements, and varactors. To design the antenna, current distribution, input impedance, and radiation power including higher-order modes, are analyzed for a narrow-angle sectorial antenna embedded with passive elements. To derive the formulae used, radiation power is analyzed in two ways: using Chu's equivalent circuit and the multipole expansion method. Numerical estimations of electrically small antennas show that dual-band antennas are feasible. The dual resonant frequencies are controlled with the embedded series and shunt inductors. A dual-band antenna is fabricated, and measured input impedances agree well with the calculated data. With the configuration, an electrically small 2.5-/5-GHz dual-band reconfig-urable antenna is designed and fabricated, where the reactance values for the series and shunt inductors are controlled with varactors, each connected in series to the inductors. Varying the voltages applied to the varactors varies the measured upper and lower resonant frequencies between 2.6 and 2.9GHz and between 5.1 and 5.3GHz, where the other resonant frequency is kept almost identical. Measured radiation patterns on the H-plane are almost omni-directional for both bands.

  • A 60 GHz Hybrid Analog/Digital Beamforming Receiver with Interference Suppression for Multiuser Gigabit/s Radio Access

    Koji TAKINAMI  Hiroyuki MOTOZUKA  Tomoya URUSHIHARA  Masashi KOBAYASHI  Hiroshi TAKAHASHI  Masataka IRIE  Takenori SAKAMOTO  Yohei MORISHITA  Kenji MIYANAGA  Takayuki TSUKIZAWA  Noriaki SAITO  Naganori SHIRAKATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    856-865

    This paper presents a 60 GHz analog/digital beamforming receiver that effectively suppresses interference signals, targeting the IEEE 802.11ad/WiGig standard. Combining two-stream analog frontends with interference rejection digital signal processing, the analog beamforming steers the antenna beam to the desired direction while the digital beamforming provides gain suppression in the interference direction. A prototype has been built with 40 nm CMOS analog frontends as well as offline baseband digital signal processing. Measurements show a 3.1 dB EVM advantage over conventional two-stream diversity during a packet collision situation.

  • API-Based Software Birthmarking Method Using Fuzzy Hashing

    Donghoon LEE  Dongwoo KANG  Younsung CHOI  Jiye KIM  Dongho WON  

     
    PAPER-Information Network

      Pubricized:
    2016/04/15
      Vol:
    E99-D No:7
      Page(s):
    1836-1851

    The software birthmarking technique has conventionally been studied in fields such as software piracy, code theft, and copyright infringement. The most recent API-based software birthmarking method (Han et al., 2014) extracts API call sequences in entire code sections of a program. Additionally, it is generated as a birthmark using a cryptographic hash function (MD5). It was reported that different application types can be categorized in a program through pre-filtering based on DLL/API numbers/names. However, similarity cannot be measured owing to the cryptographic hash function, occurrence of false negatives, and it is difficult to functionally categorize applications using only DLL/API numbers/names. In this paper, we propose an API-based software birthmarking method using fuzzy hashing. For the native code of a program, our software birthmarking technique extracts API call sequences in the segmented procedures and then generates them using a fuzzy hash function. Unlike the conventional cryptographic hash function, the fuzzy hash is used for the similarity measurement of data. Our method using a fuzzy hash function achieved a high reduction ratio (about 41% on average) more than an original birthmark that is generated with only the API call sequences. In our experiments, when threshold ε is 0.35, the results show that our method is an effective birthmarking system to measure similarities of the software. Moreover, our correlation analysis with top 50 API call frequencies proves that it is difficult to functionally categorize applications using only DLL/API numbers/names. Compared to prior work, our method significantly improves the properties of resilience and credibility.

  • Energy Distribution of Periodically Dielectric Waveguides by Arbitrary Shape of Dielectric Constants — The Influence of Dielectric Structures in the Middle Layer —

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    820-824

    In this paper, we have investigated a new structure which combines dielectric cylinders with air-hole cylinders array, and analyzed the guiding problem for periodically dielectric waveguides by arbitrary shape of dielectric constants in the middle layer. In the numerical analysis, we examined an influence of the dielectric circular cylinder along a middle layer by using the energy distribution and complex propagation constants at the first stop band region compared with hollow dielectric cylinder. In addition, we also investigated the influence of dielectric structure with equivalence cross section compared with dielectric cylinders, and clarified an influence of dielectric structures in the middle layer by energy distribution analysis for TE0 mode.

  • Free Space Optic and mmWave Communications: Technologies, Challenges and Applications Open Access

    Tawfik ISMAIL  Erich LEITGEB  Thomas PLANK  

     
    INVITED PAPER

      Vol:
    E99-B No:6
      Page(s):
    1243-1254

    Increasing demand in data-traffic has been addressed over the last few years. It is expected that the data-traffic will present the significant part of the total backbone traffic. Accordingly, much more transmission systems will be required to support this growth. A free space optic (FSO) communication is the greatest promising technology supporting high-speed and high-capacity transport networks. It can support multi Gbit/s for few kilometers transmission distance. The benefits of an FSO system are widespread, low cost, flexibility, immunity to electromagnetic field, fast deployment, security, etc. However, it suffers from some drawbacks, which limit the deployment of FSO links. The main drawback in FSO is the degradation in the signal quality because of atmospheric channel impairments. In addition, it is high sensitive for illumination noise coming from external sources such as sun and lighting systems. It is more benefit that FSO and mmWave are operating as a complementary solution that is known as hybrid FSO/mmWave links. Whereas the mmWave is susceptible to heavy rain conditions and oxygen absorption, while fog has no particular effect. This paper will help to better understand the FSO and mmWave technologies and applications operating under various atmospheric conditions. Furthermore, in order to improve the system performance and availability, several modulation schemes will be discussed. In addition to, the hybrid FSO/mmWave with different diversity combining techniques are presented.

  • Well-Shaped Microelectrode Array Structure for High-Density CMOS Amperometric Electrochemical Sensor Array

    Kiichi NIITSU  Tsuyoshi KUNO  Masayuki TAKIHI  Kazuo NAKAZATO  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    663-666

    In this study, a well-shaped microelectrode array (MEA) for fabricating a high-density complementary metal-oxide semiconductor amperometric electrochemical sensor array was designed and verified. By integrating an auxiliary electrode with the well-shaped structure of the MEA, the footprint was reduced and high density and high resolution were also achieved. The results of three-dimensional electrochemical simulations confirmed the effectiveness of the proposed MEA structure and possibility of increasing the density to four times than that achieved by the conventional two-dimensional structure.

  • User-Centric Approach for Bandwidth Allocation Method Based on Quality of Experience

    Huong PHAM-THI  Takumi MIYOSHI  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1282-1290

    This paper focuses on the bandwidth allocation methods based on real user experience for web browsing applications. Because the Internet and its services are rapidly increasing, the bandwidth allocation problem has become one of the typical challenges for Internet service providers (ISPs) and network planning with respect to providing high service quality. The quality of experience (QoE) plays an important role in the success of services, and the guarantee of QoE accordingly represents an important goal in network resource control schemes. To cope with this issue, this paper proposes two user-centric bandwidth resource allocation methods for web browsing applications. The first method dynamically allocates bandwidth by considering the same user's satisfaction in terms of QoE with respect to all users in the system, whereas the second method introduces an efficient trade-off between the QoE of each user group and the average QoE of all users. The purpose of these proposals is to provide a flexible solution to reasonably allocate limited network resources to users. By considering service quality from real users' perception viewpoint, the proposed allocation methods enable us to understand actual users' experiences. Compared to previous works, the numerical results show that the proposed bandwidth allocation methods achieve the following contributions: improving the QoE level for dissatisfied users and providing a fair distribution, as well as retaining a reasonable average QoE.

  • RSFQ 4-bit Bit-Slice Integer Multiplier

    Guang-Ming TANG  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER

      Vol:
    E99-C No:6
      Page(s):
    697-702

    A rapid single-flux-quantum (RSFQ) 4-bit bit-slice multiplier is proposed. A new systolic-like multiplication algorithm suitable for RSFQ implementation is developed. The multiplier is designed using the cell library for AIST 10-kA/cm2 1.0-µm fabrication technology (ADP2). Concurrent flow clocking is used to design a fully pipelined RSFQ logic design. A 4n×4n-bit multiplier consists of 2n+17 stages. For verifying the algorithm and the logic design, a physical layout of the 8×8-bit multiplier has been designed with target operating frequency of 50GHz and simulated. It consists of 21 stages and 11,488 Josephson junctions. The simulation results show correct operation up to 62.5GHz.

  • Energy-Efficient Resource Allocation for Multi-Radio Access in Dynamic and Heterogeneous Wireless Networks

    Fan YANG  Qinghai YANG  Kyung Sup KWAK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:6
      Page(s):
    1386-1394

    In this paper, by jointly considering power allocation and network selection, we address the energy efficiency maximization problem in dynamic and heterogeneous wireless networks, where user equipments are typically equipped with multi-homing capability. In order to effectively deal with the dynamics of heterogeneous wireless networks, a stochastic optimization problem is formulated that optimizes the long-term energy efficiency under the constraints of system stability, peak power consumption and average transmission rate. By adopting the parametric approach and Lyapunov optimization, we derive an equivalent optimization problem out of the original problem and then investigate its optimal resource allocation. Then, to reduce the computational complexity, a suboptimal resource allocation algorithm is proposed based on relaxed optimization, which adapts to time-varying channels and stochastic traffic without requiring relevant a priori knowledge. The simulation results demonstrate the theoretical analysis and validate the adaptiveness of our proposed algorithm.

1001-1020hit(5768hit)