The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

961-980hit(5768hit)

  • Side-Lobe Reduced, Circularly Polarized Patch Array Antenna for Synthetic Aperture Radar Imaging

    Mohd Zafri BAHARUDDIN  Yuta IZUMI  Josaphat Tetuko Sri SUMANTYO   YOHANDRI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1174-1181

    Antenna radiation patterns have side-lobes that add to ambiguity in the form of ghosting and object repetition in SAR images. An L-band 1.27GHz, 2×5 element proximity-coupled corner-truncated patch array antenna synthesized using the Dolph-Chebyshev method to reduce side-lobe levels is proposed. The designed antenna was sim-ulated, optimized, and fabricated for antenna performance parameter measurements. Antenna performance characteristics show good agree-ment with simulated results. A set of antennas were fabricated and then used together with a custom synthetic aperture radar system and SAR imaging performed on a point target in an anechoic chamber. Imaging results are also discussed in this paper showing improvement in image output. The antenna and its connected SAR systems developed in this work are different from most previous work in that this work is utilizing circular polarization as opposed to linear polarization.

  • A 10-bit 6.8-GS/s Direct Digital Frequency Synthesizer Employing Complementary Dual-Phase Latch-Based Architecture

    Abdel MARTINEZ ALONSO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1200-1210

    This paper introduces a novel Direct Digital Frequency Synthesizer based on Complementary Dual-Phase Latch-Based sequencing method. Compared to conventional Direct Digital Frequency Synthesizer using Flip-Flop as synchronizing element, the proposed architecture allows to double the data sampling rate while trading-off area and Power Efficiency. Digital domain modulations can be easily implemented by using a Direct Digital Frequency Synthesizer. However, due to performance limitations, CMOS-based applications have been almost exclusively restricted to VHF, UHF and L bands. This work aims to increase the operation speed and extend the applicability of this technology to Multi-band Multi-standard wireless systems operating up to 2.7 GHz. The design features a 24 bits pipelined Phase Accumulator and a 14x10 bits Phase to Amplitude Converter. The Phase to Amplitude Converter module is compressed by using Quarter Wave Symmetry technique and is entirely made up of combinational logic inserted into 12 Complementary Dual-Phase Latch-Based pipeline stages. The logic is represented in the form of Sum of Product terms obtained from a 14x10 bits sinusoidal Look-Up-Table. The proposed Direct Digital Frequency Synthesizer is designed and simulated based on 65nm CMOS standard-cell technology. A maximum data sampling rate of 6.8 GS/s is expected. Estimated Spurious Free Dynamic Range and Power Efficiency are 61 dBc and 22 mW/(GS/s) respectively.

  • Cooperative Path Selection Framework for Effective Data Gathering in UAV-Aided Wireless Sensor Networks

    Sotheara SAY  Mohamad Erick ERNAWAN  Shigeru SHIMAMOTO  

     
    PAPER

      Vol:
    E99-B No:10
      Page(s):
    2156-2167

    Sensor networks are often used to understand underlying phenomena that are reflected through sensing data. In real world applications, this understanding supports decision makers attempting to access a disaster area or monitor a certain event regularly and thus necessary actions can be triggered in response to the problems. Practitioners designing such systems must overcome difficulties due to the practical limitations of the data and the fidelity of a network condition. This paper explores the design of a network solution for the data acquisition domain with the goal of increasing the efficiency of data gathering efforts. An unmanned aerial vehicle (UAV) is introduced to address various real-world sensor network challenges such as limited resources, lack of real-time representative data, and mobility of a relay station. Towards this goal, we introduce a novel cooperative path selection framework to effectively collect data from multiple sensor sources. The framework consists of six main parts ranging from the system initialization to the UAV data acquisition. The UAV data acquisition is useful to increase situational awareness or used as inputs for data manipulation that support response efforts. We develop a system-based simulation that creates the representative sensor networks and uses the UAV for collecting data packets. Results using our proposed framework are analyzed and compared to existing approaches to show the efficiency of the scheme.

  • A Broadband Circularly Polarized Waveguide Antenna Design for Low Cross-Polarization

    Ryoji YAMAUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/19
      Vol:
    E99-B No:10
      Page(s):
    2187-2194

    An L-shaped probe with a surrounding aperture such as a waveguide can generate circular polarization (CP) waves. Circular waveguide antennas using an L-shaped probe have broadband characteristics both in axial ratio (AR) and in input impedance, however cross-polarization (XPOL) is easily generated due to its asymmetrical structure resulting in a radiation pattern that has narrow CP azimuth range. In this paper, design techniques to reduce the XPOL generated from a circular waveguide antenna using an L-shaped probe are proposed. As a result, XPOL is reduced by around 10 dB, and CP is radiated over a wide angle range of 120-150° covering frequencies from 7.35 to 9.75GHz.

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • Detecting Violations of Security Requirements for Vulnerability Discovery in Source Code

    Hongzhe LI  Jaesang OH  Heejo LEE  

     
    LETTER-Software System

      Pubricized:
    2016/06/13
      Vol:
    E99-D No:9
      Page(s):
    2385-2389

    Finding software vulnerabilities in source code before the program gets deployed is crucial to ensure the software quality. Existing source code auditing tools for vulnerability detection generate too many false positives, and only limited types of vulnerability can be detected automatically. In this paper, we propose an extendable mechanism to reveal vulnerabilities in source code with low false positives by specifying security requirements and detecting requirement violations of the potential vulnerable sinks. The experimental results show that the proposed mechanism can detect vulnerabilities with zero false positives and indicate the extendability of the mechanism to cover more types of vulnerabilities.

  • A Broadened and Deepened Anti-Jamming Technology for High-Dynamic GNSS Array Receivers

    Li-wen CHEN  Jian-sheng ZHENG  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:9
      Page(s):
    2055-2061

    Outside wireless signals often obstruct GNSS receivers from acquiring satellite signals. Traditional anti-jamming algorithms are used to suppress interference using a convex optimization method based on minimizing output power. These algorithms can reduce interference. However, these models suppress satellite signals as well as jamming interference. Under the high-dynamic condition, the output signal-to-interference-and-noise ratio (SINR) deteriorates seriously and the success rate in acquiring satellite signals falls accordingly. This paper introduces a novel, broadened model with a no-main-lobe-and-multi-virtual-null-constraints (NMLCB) method based on maximizing output power and constraining interference sources. With the new method, GNSS receivers can receive satellite signals more easily than using the power inversion (PI) and power minimization with derivative constraints null (NB) methods under the high-dynamic condition.

  • Efficiency Analysis of SiC-MOSFET-Based Bidirectional Isolated DC/DC Converters

    Atsushi SAITO  Kenshiro SATO  Yuta TANIMOTO  Kai MATSUURA  Yutaka SASAKI  Mitiko MIURA-MATTAUSCH  Hans Jürgen MATTAUSCH  Yoshifumi ZOKA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:9
      Page(s):
    1065-1070

    Circuit performance of SiC-MOSFET-based bidirectional isolated DC/DC converters is investigated based on circuit simulation with the physically accurate compact device model HiSIM_HV. It is demonstrated that the combined optimization of the MOSFETs Ron and of the inductances in the transformer can enable a conversion efficiency of more than 97%. The simulation study also verifies that the possible efficiency improvements are diminished due to the MOSFET-performance degradation, namely the carrier-mobility reduction, which results in a limitation of the possible Ron reduction. It is further demonstrated that an optimization of the MOSFET-operation conditions is important to utilize the resulting higher MOSFET performance for achieving additional converter efficiency improvements.

  • 3-Port MIMO DRAs for 2.4GHz WLAN Communications

    Katsunori ISHIMIYA  Chi-Yuk CHIU  Zhinong YING  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/04
      Vol:
    E99-B No:9
      Page(s):
    2047-2054

    A compact multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) was proposed and studied. The DRA consists of three antenna ports. The antennas operate at 2.4GHz, where one of the antenna ports was placed at the center and resonates in the monopole mode, and the two other ports were located at the sides and resonate in the TEy111 mode. Both simulation and measurements were carried out, and reasonably good agreement was obtained. In addition, a study for miniaturization with different permittivities for the DRA and a comparison of the throughput with the reference antennas of a commercial wireless LAN router were performed. Our proposed MIMO DRA gave similar performance as that of the reference antennas but was more compact in size.

  • Circular Bit-Vector-Mismatches: A New Approximate Circular String Matching with k-Mismatches

    ThienLuan HO  Seung-Rohk OH  HyunJin KIM  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E99-A No:9
      Page(s):
    1726-1729

    This paper proposes a circular bit-vector-mismatches (CBVM) algorithm for approximate circular string matching with k-mismatches. We develop the proposed CBVM algorithm based on the rotation feature of the circular pattern. By reusing the matching information of the previous substring, the next substring of the input string can be processed in parallel.

  • CMOS Majority Circuit with Large Fan-In

    Hisanao AKIMA  Yasuhiro KATAYAMA  Masao SAKURABA  Koji NAKAJIMA  Jordi MADRENAS  Shigeo SATO  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:9
      Page(s):
    1056-1064

    Majority logic is quite important for various applications such as fault tolerant systems, threshold logic, spectrum spread coding, and artificial neural networks. The circuit implementation of majority logic is difficult when the number of inputs becomes large because the number of transistors becomes huge and serious delay would occur. In this paper, we propose a new majority circuit with large fan-in. The circuit is composed of ordinary CMOS transistors and the total number of transistors is approximately only 4N, where N is the total number of inputs. We confirmed a correct operation by using HSPICE simulation. The yield of the proposed circuit was evaluated with respect to N under the variations of device parameters by using Monte Carlo simulation.

  • Embedded F-SIR Type Transmission Line with Open-Stub for Negative Group Delay Characteristic

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E99-C No:9
      Page(s):
    1023-1026

    Negative group delay characteristics can be used to improve signal-integrity performance such as equalizer for compensation of the group delay of transmission line (TL). This brief-paper newly attempts to propose a concept of the embedded Folded-Stepped Impedance Resonator (F-SIR) structure with open-stub resonator, for negative group delay and slope characteristics at high-frequency as well as low-insertion loss. The concept of the proposed TL is based on the combination of resonance and anti-resonance due to open-stub resonator in order to establish wideband negative group delay and negative slope characteristics. The proposed TL is fabricated on PCB, and then the concept is validated by measurement and simulation.

  • ROD-SAN: Energy-Efficient and High-Response Wireless Sensor and Actuator Networks Employing Wake-Up Receiver Open Access

    Hiroyuki YOMO  Takahiro KAWAMOTO  Kenichi ABE  Yuichiro EZURE  Tetsuya ITO  Akio HASEGAWA  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1998-2008

    Wireless sensor and actuator networks (WSANs) are required to achieve both energy-efficiency and low-latency in order to prolong the network lifetime while being able to quickly respond to actuation commands transmitted based on the real-time sensing data. These two requirements are in general in a relationship of trade-off when each node operates with well-known duty-cycling modes: nodes need to make their radio interfaces (IFs) frequently active in order to promptly detect the communication requests from the other nodes. One approach to break this inherent trade-off, which has been actively studied in recent literature of wireless sensor networks (WSNs), is the introduction of wake-up receiver that is installed into each node and used only for detecting the communication requests. The main radio IF in each node is woken up only when needed, i.e., in an on-demand manner, through a wake-up message received by the wake-up receiver. In this paper, we introduce radio-on-demand sensor and actuator networks (ROD-SAN) where the concept of wake-up receiver is applied to realize on-demand WSANs. We first evaluate data collection rate, packet delivery latency, and energy-efficiency of ROD-SAN and duty-cycling modes defined in IEEE 802.15.4e by computer simulations. Then, we present our test-bed implementation of ROD-SAN including all protocols from the lowest layer of wake-up signaling to the application layer offering the functionalities of information monitoring and networked control. Finally, we show experimental results obtained through our field trial in which 20 nodes are deployed in an outdoor area with the scale of 450m × 200m. The numerical results obtained by computer simulations and experiments confirm the effectiveness of ROD-SAN to realize energy-efficient and high-response WSANs.

  • Analysis over Spectral Efficiency and Power Scaling in Massive MIMO Dual-Hop Systems with Multi-Pair Users

    Yi WANG  Baofeng JI  Yongming HUANG  Chunguo LI  Ying HU  Yewang QIAN  Luxi YANG  

     
    PAPER-Information Theory

      Vol:
    E99-A No:9
      Page(s):
    1665-1673

    This paper considers a massive multiple-input-multiple-output (MIMO) relaying system with multi-pair single-antenna users. The relay node adopts maximum-ratio combining/maximum-ratio transmission (MRC/MRT) stratagem for reception/transmission. We analyze the spectral efficiency (SE) and power scaling laws with respect to the number of relay antennas and other system parameters. First, by using the law of large numbers, we derive the closed-form expression of the SE, based on which, it is shown that the SE per user increases with the number of relay antennas but decreases with the number of user pairs, both logarithmically. It is further discovered that the transmit power at the source users and the relay can be continuously reduced as the number of relay antennas becomes large while the SE can maintains a constant value, which also means that the energy efficiency gain can be obtained simultaneously. Moreover, it is proved that the number of served user pairs can grow proportionally over the number of relay antennas with arbitrary SE requirement and no extra power cost. All the analytical results are verified through the numerical simulations.

  • Improving Fairness with Harvesting-Rate Adapted Polling for Energy Harvesting Wireless Sensor Networks

    Masashi KUNIKAWA  Hiroyuki YOMO  

     
    PAPER-Network

      Vol:
    E99-B No:9
      Page(s):
    2036-2046

    Energy harvesting wireless sensor networks (EH-WSNs) are being actively studied in order to solve the problems faced by battery-operated WSNs, namely the cost for battery replacement and the negative impact on the environment. In EH-WSNs, each node harvests ambient energy, such as light, heat, vibration, and uses it for sensing, computations, and wireless communications, where the amount of harvested energy of each node varies depending on their environments. MAC protocols for EH-WSNs need to be designed to achieve high throughput and fairness, however, the conventional MAC protocols proposed for EH-WSNs do not adapt to the harvesting rate of each node, resulting in poor fairness. In this paper, we propose a fair MAC protocol based on polling scheme for EH-WSNs. The proposed scheme adjusts contention probability of each node according to its harvesting rate, thereby increasing the throughput of nodes with low harvesting rate. We evaluate throughput and fairness of the proposed fair polling scheme by theoretical analysis and computer simulations, and show that the proposed scheme can improve fairness with little degradation of the overall network throughput.

  • Detecting Logical Inconsistencies by Clustering Technique in Natural Language Requirements

    Satoshi MASUDA  Tohru MATSUODANI  Kazuhiko TSUDA  

     
    PAPER

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:9
      Page(s):
    2210-2218

    In the early phases of the system development process, stakeholders exchange ideas and describe requirements in natural language. Requirements described in natural language tend to be vague and include logical inconsistencies, whereas logical consistency is the key to raising the quality and lowering the cost of system development. Hence, it is important to find logical inconsistencies in the whole requirements at this early stage. In verification and validation of the requirements, there are techniques to derive logical formulas from natural language requirements and evaluate their inconsistencies automatically. Users manually chunk the requirements by paragraphs. However, paragraphs do not always represent logical chunks. There can be only one logical chunk over some paragraphs on the other hand some logical chunks in one paragraph. In this paper, we present a practical approach to detecting logical inconsistencies by clustering technique in natural language requirements. Software requirements specifications (SRSs) are the target document type. We use k-means clustering to cluster chunks of requirements and develop semantic role labeling rules to derive “conditions” and “actions” as semantic roles from the requirements by using natural language processing. We also construct an abstraction grammar to transform the conditions and actions into logical formulas. By evaluating the logical formulas with input data patterns, we can find logical inconsistencies. We implemented our approach and conducted experiments on three case studies of requirements written in natural English. The results indicate that our approach can find logical inconsistencies.

  • A Virtualization-Based Hybrid Storage System for a Map-Reduce Framework

    Aseffa DEREJE TEKILU  Chin-Hsien WU  

     
    PAPER-Software System

      Pubricized:
    2016/05/25
      Vol:
    E99-D No:9
      Page(s):
    2248-2258

    A map-reduce framework is popular for big data analysis. In the typical map-reduce framework, both master node and worker nodes can use hard-disk drives (HDDs) as local disks for the map-reduce computation. However, because of the inherit mechanical problems of HDDs, the I/O performance is a bottleneck for the map-reduce framework when I/O-intensive applications (e.g., sorting) are performed. Replacing HDDs with solid-state drives (SSDs) is not economical, although SSDs have better performance than HDDs. In this paper, we propose a virtualization-based hybrid storage system for the map-reduce framework. The objective of the paper is to combine the advantages of the fast access property of SSDs and the low cost of HDDs by realizing an economical design and improving I/O performance of a map-reduce framework in a virtualization environment. We propose three storage combinations: SSD-based, HDD-based, and a hybrid of SSD-based and HDD-based storage systems which balances speed, capacity, and lifetime. According to experiments, the hybrid of SSD-based and HDD-based storage systems offers superior performance and economy.

  • High-Capacity Wireless Access Networks Using 920MHz Band for Wide-Area IoT/M2M Services Open Access

    Kazunori AKABANE  Nobuaki MOCHIZUKI  Shigeru TERUHI  Mamoru KOBAYASHI  Shuichi YOSHINO  Masashi SHIMIZU  Kazuhiro UEHARA  

     
    INVITED PAPER

      Vol:
    E99-B No:9
      Page(s):
    1920-1929

    In the near future, many sensors and terminals will be connected to the public network to provide various convenient IoT/M2M services. In order to connect many sensors to the network efficiently, wireless communication systems in the 920MHz band are seen as attractive solutions. We are focusing on the 920MHz band to research and develop high-capacity protocols that can accommodate many terminals, and low power consumption technologies for battery-driven terminals. In this paper, we describe the following three concrete wireless systems that use our proposals. (1) A physical distribution pallet management system that can handle thousands of pallet-embedded sensors and a wireless module with a battery lifetime of about ten years. (2) Water leakage monitoring system for underground pipes by using sensors and a wireless module in each valve box. (3) A wide-area and high-capacity radio relay system for smart metering services like the reading of gas meters. The radio relay system can accommodate various sensors and terminals and has large potential for providing various IoT/M2M services in conjunction with smart metering services.

  • A Search-Based Constraint Elicitation in Test Design

    Hiroyuki NAKAGAWA  Tatsuhiro TSUCHIYA  

     
    PAPER

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:9
      Page(s):
    2229-2238

    Pair-wise testing is an effective test planning technique for finding interaction faults using a small set of test cases. Constraint elicitation is an important process in the pair-wise testing design since constraints determine the test space; however, the constraint elicitation process has not been well studied. It usually requires manual capturing and precise definition of constraints. In this paper, we propose a constraint elicitation process that helps combinatorial test design. Our elicitation process consists of two steps: parameter combination identification and value pair determination. We conduct experiments on some test models, and demonstrate that some extracted rules match constraints and others helps to define constraints.

  • Entity Identification on Microblogs by CRF Model with Adaptive Dependency

    Jun-Li LU  Makoto P. KATO  Takehiro YAMAMOTO  Katsumi TANAKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/06/20
      Vol:
    E99-D No:9
      Page(s):
    2295-2305

    We address the problem of entity identification on a microblog with special attention to indirect reference cases in which entities are not referred to by their names. Most studies on identifying entities referred to them by their full/partial name or abbreviation, while there are many indirectly mentioned entities in microblogs, which are difficult to identify in short text such as microblogs. We therefore tackled indirect reference cases by developing features that are particularly important for certain types of indirect references and modeling dependency among referred entities by a Conditional Random Field (CRF) model. In addition, we model non-sequential order dependency while keeping the inference tractable by dynamically building dependency among entities. The experimental results suggest that our features were effective for indirect references, and our CRF model with adaptive dependency was robust even when there were multiple mentions in a microblog and achieved the same high performance as that with the fully connected CRF model.

961-980hit(5768hit)