The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

1101-1120hit(5768hit)

  • Characteristics of Discharge Currents Measured through Body-Attached Metal for Modeling ESD from Wearable Electronic Devices

    Takeshi ISHIDA  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E99-B No:1
      Page(s):
    186-191

    To investigate electrostatic discharge (ESD) immunity testing for wearable electronic devices, the worst scenario i.e., an ESD event occurs when the body-mounted device approaches a grounded conductor is focused in this paper. Discharge currents caused by air discharges from a charged human through a hand-held metal bar or through a semi-sphere metal attached to the head, arm or waist in lieu of actual wearable devices are measured. As a result, it is found that at a human charge voltage of 1kV, the peak current from the semi-sphere metal is large in order of the attachment of the waist (15.4A), arm (12.8A) and head (12.2A), whereas the peak current (10.0A) from the hand-held metal bar is the smallest. It is also found that the discharge currents through the semi-sphere metals decrease to zero at around 50ns regardless of the attachment positions, although the current through the hand-held metal bar continues to flow at over 90ns. These discharge currents are further characterized by the discharge resistance, the charge storage capacitance and the discharge time constant newly derived from the waveform energy, which are validated from the body impedance measured through the hand-held and body-mounted metals. The above finding suggests that ESD immunity test methods for wearable devices require test specifications entirely different from the conventional ESD immunity testing.

  • Broadband Circularly Polarized Stacked Patch Antenna for Universal UHF RFID Applications Open Access

    Chih-Chiang CHEN  Bo-Shau CHEN  Chow-Yen-Desmond SIM  

     
    INVITED PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    2-8

    A double layer stacked patch antenna with a size of 200×200×48mm3 is proposed in this investigation. To achieve a broad CP bandwidth that can cover universal UHF RFID applications (840-960MHz), a slot loaded circular patch antenna fed by an L-shaped probe is designed as the lower layer (main patch), while the top layer (parasitic patch) is a simple circular patch loaded with a cross-slot of dissimilar arm lengths. Besides demonstrating a broad 10-dB return loss bandwidth of 16% (823-966MHz) and a CP bandwidth (3-dB axial ratio) of 14.0% (837-963MHz), the proposed antenna also yields maximum gain and minimum radiation efficiency of 8.8dBic and 85%, respectively, across the universal UHF RFID bands.

  • Analysis of Elderly Drivers' Performance Using Large-Scale Test Data

    Yasuhiko NAKANO  Haruki KAWANAKA  Koji OGURI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    243-251

    This study explored the question of how to minimize older drivers' accidents and to identify at-risk drivers by analyzing their driving performance. Previous traffic research reported that there were two factors involved in risky driving, namely driving risk perception and risky driving attitude. We investigated these two factors as indicators of an at-risk driver by using large-scale test data from license renewal tests that are obligatory for Japanese drivers who are 70 years of age or older. The tests include a driving simulator test, an on-road test, and a cognitive screening test. By using these assessments and predictions made with renewal driving tests, we were able to indicate the possibility of identifying at-risk drivers.

  • Effect of Vegetation Growth on Radio Wave Propagation in 920-MHz Band

    Masaki HARA  Hitoshi SHIMASAKI  Yuichi KADO  Masatoshi ICHIDA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    81-86

    To design a wireless sensor network for farms, it is necessary to understand and predict the effect of vegetation. In this study, the change in the propagation loss characteristics in 920-MHz band is examined during the growth of mulberry bushes. The received signal strength indicator (RSSI) is measured as a function of the distance between the transmitting antenna (Tx) and the receiving antenna (Rx) in a 50×50m mulberry field. The Tx and Rx are placed at a height of 1.5m. Moreover, the horizontal and vertical polarizations are measured and the differences are shown. Three empirical vegetation attenuation models are introduced, and the measured data have been fitted to each model. The results show that the non-zero gradient model is the best model at predicting the vegetation attenuation in a mulberry farm regardless of the polarization or mulberry growth. It is found that the attenuation dependence on the plant height is linear. Furthermore, the results have revealed that the horizontal polarization had about 1.5 times as large an effect on the vegetation attenuation as the vertical polarization.

  • LSA-X: Exploiting Productivity Factors in Linear Size Adaptation for Analogy-Based Software Effort Estimation

    Passakorn PHANNACHITTA  Akito MONDEN  Jacky KEUNG  Kenichi MATSUMOTO  

     
    PAPER-Software Engineering

      Pubricized:
    2015/10/15
      Vol:
    E99-D No:1
      Page(s):
    151-162

    Analogy-based software effort estimation has gained a considerable amount of attention in current research and practice. Its excellent estimation accuracy relies on its solution adaptation stage, where an effort estimate is produced from similar past projects. This study proposes a solution adaptation technique named LSA-X that introduces an approach to exploit the potential of productivity factors, i.e., project variables with a high correlation with software productivity, in the solution adaptation stage. The LSA-X technique tailors the exploitation of the productivity factors with a procedure based on the Linear Size Adaptation (LSA) technique. The results, based on 19 datasets show that in circumstances where a dataset exhibits a high correlation coefficient between productivity and a related factor (r≥0.30), the proposed LSA-X technique statistically outperformed (95% confidence) the other 8 commonly used techniques compared in this study. In other circumstances, our results suggest using any linear adaptation technique based on software size to compensate for the limitations of the LSA-X technique.

  • High-Speed Visible Light Communication Using Combination of Low-Speed Image Sensor and Polygon Mirror

    Yoshihito IMAI  Tadashi EBIHARA  Koichi MIZUTANI  Naoto WAKATSUKI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    263-270

    Visible light communication is one of the key technologies for intelligent transport systems (ITS). However, current visible light communication systems require high-cost devices, such as high-speed image sensors, to support their high transmission rates. In this paper, we designed a communication system with combination of a low-speed commercial image sensor and a polygon mirror — namely, a fast-blinking light signal is scanned by the polygon mirror and captured as a residual image on the low-speed image sensor — to achieve visible light communication on existing mobile devices with high transmission rates. We also analyzed some required conditions, such as the relationship between the exposure time of the image sensor and the optimal resolution, and conducted experiments for performance evaluation. As a result, we found that the proposed system could achieve a data rate of 120bps, 10 times faster than that of the existing scheme when we compare them using the same image sensor. We also found that the proposed system can achieve a practical bit error rate in a low-noise environment.

  • Supervised SOM Based ATR Method with Circular Polarization Basis of Full Polarimetric Data

    Shouhei OHNO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:12
      Page(s):
    2520-2527

    Satellite-borne or aircraft-borne synthetic aperture radar (SAR) is useful for high resolution imaging analysis for terrain surface monitoring or surveillance, particularly in optically harsh environments. For surveillance application, there are various approaches for automatic target recognition (ATR) of SAR images aiming at monitoring unidentified ships or aircraft. In addition, various types of analyses for full polarimetric data have been developed recently because it can provide significant information to identify structure of targets, such as vegetation, urban, sea surface areas. ATR generally consists of two processes, one is target feature extraction including target area determination, and the other is classification. In this paper, we propose novel methods for these two processes that suit full polarimetric exploitation. As the target area extraction method, we introduce a peak signal-to noise ratio (PSNR) based synthesis with full polarimetric SAR images. As the classification method, the circular polarization basis conversion is adopted to improve the robustness especially to variation of target rotation angles. Experiments on a 1/100 scale model of X-band SAR, demonstrate that our proposed method significantly improves the accuracy of target area extraction and classification, even in noisy or target rotating situations.

  • Postcopy Live Migration with Guest-Cooperative Page Faults

    Takahiro HIROFUCHI  Isaku YAMAHATA  Satoshi ITOH  

     
    PAPER-Operating System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2159-2167

    Postcopy live migration is a promising alternative of virtual machine (VM) migration, which transfers memory pages after switching the execution host of a VM. It allows a shorter and more deterministic migration time than precopy migration. There is, however, a possibility that postcopy migration would degrade VM performance just after switching the execution host. In this paper, we propose a performance improvement technique of postcopy migration, extending the para-virtualized page fault mechanism of a virtual machine monitor. When the guest operating system accesses a not-yet-transferred memory page, our proposed mechanism allows the guest kernel to defer the execution of the current process until the page data is transferred. In parallel with the page transfer, the guest kernel can yield VCPU to other active processes. We implemented the proposed technique in our postcopy migration mechanism for Qemu/KVM. Through experiments, we confirmed that our technique successfully alleviated performance degradation of postcopy migration for web server and database benchmarks.

  • A Verification Method for Single-Flux-Quantum Circuits Using Delay-Based Time Frame Model

    Takahiro KAWAGUCHI  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E98-A No:12
      Page(s):
    2556-2564

    Superconducting single-flux-quantum (SFQ) device is an emerging device which can realize digital circuits with high switching speed and low power consumption. In SFQ digital circuits, voltage pulses are used for carrier of information, and the representation of logic values is different from that of CMOS circuits. Design methods exclusive to SFQ circuits have been developed. In this paper, we present timing analysis and functional verification methods for SFQ circuits based on new timing model which we call delay-based time frame model. Assuming that possible pulse arrival is periodic, the model defines comprehensive time frames and representation of logic values. In static timing analysis, expected pulse arrival time is checked based on the model, and the order among pulse arrival times is calculated for each logic gate. In functional verification, the circuit behavior is abstracted in a form similar to a synchronous sequential circuit using the order of pulse arrival times, and then the behavior is verified using formal verification tools. Using our proposed methods, we can verify the functional behavior of SFQ circuits with complex clocking scheme, which appear often in practical design but cannot be dealt with in existing verification method. Experimental results show that our method can be applied to practical designs.

  • An Empirical Study of Bugs in Industrial Financial Systems

    Xiao XUAN  Xiaoqiong ZHAO  Ye WANG  Shanping LI  

     
    LETTER-Software Engineering

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2322-2327

    Bugs in industrial financial systems have not been extensively studied. To address this gap, we focused on the empirical study of bugs in three systems, PMS, β-Analyzer, and OrderPro. Results showed the 3 most common types of bugs in industrial financial systems to be internal interface (19.00%), algorithm/method (17.67%), and logic (15.00%).

  • Photonic Millimeter Wave Transmitter for a Real-Time Coherent Wireless Link Based on Injection Locking of Integrated Laser Diodes

    Shintaro HISATAKE  Guillermo CARPINTERO  Yasuyuki YOSHIMIZU  Yusuke MINAMIKATA  Kazuki OOGIMOTO  Yu YASUDA  Frédéric van DIJK  Tolga TEKIN  Tadao NAGATSUMA  

     
    PAPER

      Vol:
    E98-C No:12
      Page(s):
    1105-1111

    We propose the concept of an integrated coherent photonic wireless transmitter based on the simultaneous injection locking of two monolithically integrated distributed feedback (DFB) laser diodes (LDs) using an optical frequency comb (OFC). We characterize the basic operation of the transmitter and demonstrate that two injection-locked integrated DFB LDs are sufficiently stable to generate the carrier signal using a uni-traveling-carrier photodiode (UTC-PD) for a real-time error-free (bit error rate: BER < 10-11) coherent transmission with a data rate of 10 Gbit/s at a carrier frequency of 97 GHz. In the coherent wireless transmission, we compare the BER characteristics of the injection-locked transmitter with that of an actively phase-stabilized transmitter and show that the power penalty of 8-dB for the injection-locked transmitter is due to the RF spurious components, which can be reduced by integrating the OFC generator (OFCG) and LDs on the same chip. Our results suggest that the integration of the OFCG, DFB LDs, modulators, semiconductor optical amplifiers, and UTC-PD on the same chip is a promising strategy to develop a practical real-time ultrafast coherent millimeter/terahertz wave wireless transmitter.

  • A Novel Earthquake Education System Based on Virtual Reality

    Xiaoli GONG  Yanjun LIU  Yang JIAO  Baoji WANG  Jianchao ZHOU  Haiyang YU  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/09/16
      Vol:
    E98-D No:12
      Page(s):
    2242-2249

    An earthquake is a destructive natural disaster, which cannot be predicted accurately and causes devastating damage and losses. In fact, many of the damages can be prevented if people know what to do during and after earthquakes. Earthquake education is the most important method to raise public awareness and mitigate the damage caused by earthquakes. Generally, earthquake education consists of conducting traditional earthquake drills in schools or communities and experiencing an earthquake through the use of an earthquake simulator. However, these approaches are unrealistic or expensive to apply, especially in underdeveloped areas where earthquakes occur frequently. In this paper, an earthquake drill simulation system based on virtual reality (VR) technology is proposed. A User is immersed in a 3D virtual earthquake environment through a head mounted display and is able to control the avatar in a virtual scene via Kinect to respond to the simulated earthquake environment generated by SIGVerse, a simulation platform. It is a cost effective solution and is easy to deploy. The design and implementation of this VR system is proposed and a dormitory earthquake simulation is conducted. Results show that powerful earthquakes can be simulated successfully and the VR technology can be applied in the earthquake drills.

  • Propagation Channel Interpolation for Fingerprint-Based Localization of Illegal Radios

    Azril HANIZ  Gia Khanh TRAN  Ryosuke IWATA  Kei SAKAGUCHI  Jun-ichi TAKADA  Daisuke HAYASHI  Toshihiro YAMAGUCHI  Shintaro ARATA  

     
    PAPER-Sensing

      Vol:
    E98-B No:12
      Page(s):
    2508-2519

    Conventional localization techniques such as triangulation and multilateration are not reliable in non-line-of-sight (NLOS) environments such as dense urban areas. Although fingerprint-based localization techniques have been proposed to solve this problem, we may face difficulties because we do not know the parameters of the illegal radio when creating the fingerprint database. This paper proposes a novel technique to localize illegal radios in an urban environment by interpolating the channel impulse responses stored as fingerprints in a database. The proposed interpolation technique consists of interpolation in the bandwidth (delay), frequency and spatial domains. A localization algorithm that minimizes the squared error criterion is employed in this paper, and the proposed technique is evaluated through Monte Carlo simulations using location fingerprints obtained from ray-tracing simulations. Results show that utilizing an interpolated fingerprint database is advantageous in such scenarios.

  • Signaling Based Discard with Flags: Per-Flow Fairness in Ring Aggregation Networks

    Yu NAKAYAMA  Ken-Ichi SUZUKI  Jun TERADA  Akihiro OTAKA  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2431-2438

    Ring aggregation networks are widely employed for metro access networks. A layer-2 ring with Ethernet Ring Protection is a popular topology for carrier services. Since frames are forwarded along ring nodes, a fairness scheme is required to achieve throughput fairness. Although per-node fairness algorithms have been developed for the Resilient Packet Ring, the per-node fairness is insufficient if there is bias in a flow distribution. To achieve per-flow fairness, N Rate N+1 Color Marking (NRN+1CM) was proposed. However, NRN+1CM can achieve fairness in case there are sufficient numbers of available bits on a frame header. It cannot be employed if the frame header cannot be overwritten. Therefore, the application range of NRN+1CM is limited. This paper proposes a Signaling based Discard with Flags (SDF) scheme for per-flow fairness. The objective of SDF is to eliminate the drawback of NRN+1CM. The key idea is to attach a flag to frames according to the input rate and to discard them selectively based on the flags and a dropping threshold. The flag is removed before the frame is transmitted to another node. The dropping threshold is cyclically updated by signaling between ring nodes and a master node. The SDF performance was confirmed by employing a theoretical analysis and computer simulations. The performance of SDF was comparable to that of NRN+1CM. It was verified that SDF can achieve per-flow throughput fairness without using a frame header in ring aggregation networks.

  • A Decoding Algorithm for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2415-2422

    Cassuto and Blaum presented a new coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. Pair distance and pair error are used in symbol-pair read channels. Yaakobi et al. proved a lower bound on the minimum pair distance of cyclic codes. Furthermore, they provided a decoding algorithm for correcting pair errors using a decoder for cyclic codes, and showed the number of pair errors that can be corrected by their algorithm. However, their algorithm cannot correct all pair error vectors within half of the minimum pair distance. In this paper, we propose an efficient decoding algorithm for cyclic codes over symbol-pair read channels. It is based on the relationship between pair errors and syndromes. In addition, we show that the proposed algorithm can correct more pair errors than Yaakobi's algorithm.

  • Off-Grid DOA Estimation Based on Analysis of the Convexity of Maximum Likelihood Function

    Liang LIU  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:12
      Page(s):
    2705-2708

    Spatial compressive sensing (SCS) has recently been applied to direction-of-arrival (DOA) estimation, owing to its advantages over conventional versions. However the performance of compressive sensing (CS)-based estimation methods degrades when the true DOAs are not exactly on the discretized sampling grid. We solve the off-grid DOA estimation problem using the deterministic maximum likelihood (DML) estimation method. In this letter, on the basis of the convexity of the DML function, we propose a computationally efficient algorithm framework for off-grid DOA estimation. Numerical experiments demonstrate the superior performance of the proposed methods in terms of accuracy, robustness and speed.

  • A Flexible Direct Attached Storage for a Data Intensive Application

    Takatsugu ONO  Yotaro KONISHI  Teruo TANIMOTO  Noboru IWAMATSU  Takashi MIYOSHI  Jun TANAKA  

     
    PAPER-Storage System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2168-2177

    Big data analysis and a data storing applications require a huge volume of storage and a high I/O performance. Applications can achieve high level of performance and cost efficiency by exploiting the high I/O performance of direct attached storages (DAS) such as internal HDDs. With the size of stored data ever increasing, it will be difficult to replace servers since internal HDDs contain huge amounts of data. Generally, the data is copied via Ethernet when transferring the data from the internal HDDs to the new server. However, the amount of data will continue to rapidly increase, and thus, it will be hard to make these types of transfers through the Ethernet since it will take a long time. A storage area network such as iSCSI can be used to avoid this problem because the data can be shared with the servers. However, this decreases the level of performance and increases the costs. Improving the flexibility without incurring I/O performance degradation is required in order to improve the DAS architecture. In response to this issue, we propose FlexDAS, which improves the flexibility of direct attached storage by using a disk area network (DAN) without degradation the I/O performance. A resource manager connects or disconnects the computation nodes to the HDDs via the FlexDAS switch, which supports the SAS or SATA protocols. This function enables for the servers to be replaced in a short period of time. We developed a prototype FlexDAS switch and quantitatively evaluated the architecture. Results show that the FlexDAS switch can disconnect and connect the HDD to the server in just 1.16 seconds. We also confirmed that the FlexDAS improves the performance of the data intensive applications by up to 2.84 times compared with the iSCSI.

  • Moiré Reduction Using Inflection Point and Color Variation in Digital Camera of No Optical Low Pass Filter

    Dae-Chul KIM  Wang-Jun KYUNG  Ho-Gun HA  Yeong-Ho HA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/09/10
      Vol:
    E98-D No:12
      Page(s):
    2290-2298

    The role of an optical low-pass filter (OLPF) in a digital still camera is to remove the high spatial frequencies that cause aliasing, thereby enhancing the image quality. However, this also causes some loss of detail. Yet, when an image is captured without the OLPF, moiré generally appears in the high spatial frequency region of the image. Accordingly, this paper presents a moiré reduction method that allows omission of the OLPF. Since most digital still cameras use a CCD or a CMOS with a Bayer pattern, moiré patterns and color artifacts are simultaneously induced by aliasing at high spatial frequencies. Therefore, in this study, moiré reduction is performed in both the luminance channel to remove the moiré patterns and the color channel to reduce color smearing. To detect the moiré patterns, the spatial frequency response (SFR) of the camera is first analyzed. The moiré regions are identified using patterns related to the SFR of the camera and then analyzed in the frequency domain. The moiré patterns are reduced by removing their frequency components, represented by the inflection point between the high-frequency and DC components in the moiré region. To reduce the color smearing, color changing regions are detected using the color variation ratios for the RGB channels and then corrected by multiplying with the average surrounding colors. Experiments confirm that the proposed method is able to reduce the moiré in both the luminance and color channels, while also preserving the detail.

  • Survivability Analysis of VM-Based Intrusion Tolerant Systems

    Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Network

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2082-2090

    Survivability is the capability of a system to provide its services in a timely manner even after intrusion and compromise occur. In this paper, we focus on the quantitative analysis of survivability of virtual machine (VM) based intrusion tolerant system in the presence of Byzantine failures due to malicious attacks. Intrusion tolerant system has the ability of a system to continuously provide correct services even if the system is intruded. This paper introduces a scheme of the intrusion tolerant system with virtualization, and derives the success probability for one request by a Markov chain under the environment where VMs have been intruded due to a security hole by malicious attacks. Finally, in numerical experiments, we evaluate the performance of VM-based intrusion tolerant system from the viewpoint of survivability.

  • Novel High Performance Scheduling Algorithms for Crosspoint Buffered Crossbar Switches

    Xiaoting WANG  Yiwen WANG  Shichao LI  Ping LI  

     
    PAPER-Switching System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2105-2115

    The crossbar-based switch fabric is widely used in today's high performance switches, due to its internally nonblocking and simply implementation properties. Usually there are two main switching architectures for crossbar-based switch fabric: internally bufferless crossbar switch and crosspoint buffered crossbar switch. As internally bufferless crossbar switch requires a complex centralized scheduler which limits its scalability to high speeds, crosspoint buffered crossbar switch has gained more attention because of its simpler distributed scheduling algorithm and better switching performance. However, almost all the scheduling algorithms proposed previously for crosspoint buffered crossbar switch either have unsatisfactory scheduling performance under non-uniform traffic patterns or show poor service fairness between input traffic flows. In order to overcome the disadvantages of existing algorithms, in this paper we propose two novel high performance scheduling algorithms named MCQF_RR and IMCQF_RR for crosspoint buffered crossbar switches. Both algorithms have a time complexity of O(log N), where N is the number of input/output ports of the switch. MCQF_RR takes advantage of the combined weight information about queue length and service waiting time of input queues to perform scheduling. In order to further reduce the scheduling complexity and make it feasible for high speed switches, IMCQF_RR uses the compressed queue length information instead of original queue length information to schedule cells in input VOQs. Simulation results show that our novel scheduling algorithms MCQF_RR and IMCQF_RR can demonstrate excellent delay performance comparable to existing high performance scheduling algorithms under both uniform and non-uniform traffic patterns, while maintain good service fairness performance under severe non-uniform traffic patterns.

1101-1120hit(5768hit)