The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IR(5768hit)

1061-1080hit(5768hit)

  • Real-Time Vital Monitoring for Persons during Exercises — Solutions and Challenges — Open Access

    Shinsuke HARA  Hiroyuki OKUHATA  Takashi KAWABATA  Hajime NAKAMURA  Hiroyuki YOMO  

     
    INVITED PAPER

      Vol:
    E99-B No:3
      Page(s):
    556-564

    In the field of education such as elementary and middle schools, teachers want to take care of schoolchildren during physical trainings and after-school club activities. On the other hand, in the field of sports such as professional and national-level sports, physical or technical trainers want to manage the health, physical and physiological conditions of athletes during exercise trainings in the grounds. In this way, it is required to monitor vital signs for persons during exercises, however, there are several technical problems to be solved in its realization. In this paper, we present the importance and necessity of vital monitoring for persons during exercises, and to make it possible periodically, reliably and in real-time, we present the solutions which we have so far worked out and point out remaining technical challenges in terms of vital/physical sensing, wireless transmission and human interface.

  • Slicing Fine-Grained Code Change History

    Katsuhisa MARUYAMA  Takayuki OMORI  Shinpei HAYASHI  

     
    PAPER-Software Engineering

      Pubricized:
    2015/12/21
      Vol:
    E99-D No:3
      Page(s):
    671-687

    Change-aware development environments can automatically record fine-grained code changes on a program and allow programmers to replay the recorded changes in chronological order. However, since they do not always need to replay all the code changes to investigate how a particular entity of the program has been changed, they often eliminate several code changes of no interest by manually skipping them in replaying. This skipping action is an obstacle that makes many programmers hesitate when they use existing replaying tools. This paper proposes a slicing mechanism that automatically removes manually skipped code changes from the whole history of past code changes and extracts only those necessary to build a particular class member of a Java program. In this mechanism, fine-grained code changes are represented by edit operations recorded on the source code of a program and dependencies among edit operations are formalized. The paper also presents a running tool that slices the operation history and replays its resulting slices. With this tool, programmers can avoid replaying nonessential edit operations for the construction of class members that they want to understand. Experimental results show that the tool offered improvements over conventional replaying tools with respect to the reduction of the number of edit operations needed to be examined and over history filtering tools with respect to the accuracy of edit operations to be replayed.

  • A Novel Resonator Design for Q Factor Improvement Using Tightly-Coupled Parallel Coils in Coupled Magnetic Resonance Wireless Power Transfer

    Cheng YANG  Koichi TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:3
      Page(s):
    685-694

    This study proposes a novel resonator design that uses tightly coupled parallel coils to improve the quality factor (Q factor) in coupled magnetic resonance wireless power transfer. Depending on the characteristics of the tightly coupled parallel-connected coils, the proposed resonator can offer significantly reduced resistance with very little self-inductance loss. A double-layer spiral coil structure is used for resonator design and evaluating its characteristics. Measured results show that a resonator consisting of two identical, tightly coupled parallel double-layer spiral coils can match the Q factor of a conventional double-layer spiral coil with the same number of turns, even though its equivalent resistance is approximately 75% less. Moreover, the system power transfer performance of the resonator was measured under the impedance matching condition. To further reduce the resistance, we propose another resonator comprising of three parallel and tightly coupled double-layer spiral coils, and measure its equivalent resistance characteristics for different wire gap sizes.

  • Two-Way Cognitive DF Relaying in WSNs with Practical RF Energy Harvesting Node

    Dang Khoa NGUYEN  Hiroshi OCHI  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    675-684

    This work presents the exact outage performance and throughput of two-way cognitive decode-and-forward relaying wireless sensor networks with realistic transceiver relay. The relay is a self-powered wireless node that harvests radio frequency energy from the transmitted signals. We consider four configurations of a network with formed by combining two bidirectional relaying protocols (multiple access broadcast protocol and time division broadcast protocol), and two power transfer policies (dual-source energy transfer and single-fixed-source energy transfer). Based on our analysis, we provide practical insights into the impact of transceiver hardware impairments on the network performance, such as the fundamental capacity ceiling of the network with various configurations that cannot be exceeded by increasing transmit power given a fixed transmission rate and the transceiver selection strategy for the network nodes that can optimize the implementation cost and performance tradeoff.

  • Structure Transformation of Bended Diamond-Like Carbon Free-Space Nanowiring by Ga Focused-Ion-Beam Irradiation

    Ken-ichiro NAKAMATSU  Shinji MATSUI  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    365-370

    We observed Ga focused-ion-beam (FIB) irradiation effect onto diamond-like carbon (DLC) free-space nanowiring (FSW) fabricated by focused-ion-beam chemical vapor deposition (FIB-CVD). A bended FIB-CVD FSW completely strained after Ga-FIB irradiation with raster scanning. This is probably caused by generation of compression stresses onto the surface of FSW, because the surface state of the nanowire changed with Ga-FIB irradiation. Transmission electron microscope (TEM) study indicates that Ga of FSW core part disappeared after Ga-FIB irradiation and a near-edge X-ray absorption fine structure (NEXAFS) analysis revealed C-Ga bond formation onto the surface. This is attributed to a movement of Ga from the core region to the surface, and/or an adsorption of Ga onto the surface by Ga-FIB scanned irradiation. The transformation of FSW is not only fascinating as physical phenomenon, but also effective for fabricating various 3-dimensional nanodevices equipped with nanowires utilized as electric wiring.

  • Cooperative Local Repair with Multiple Erasure Tolerance

    Jiyong LU  Xuan GUANG  Linzhi SHEN  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:3
      Page(s):
    765-769

    In distributed storage systems, codes with lower repair locality are much more desirable due to their superiority in reducing the disk I/O complexity of each repair process. Motivated partially by both codes with information (r,δ1)c locality and codes with cooperative (r,l) locality, we propose the concept of codes with information (r,l,δ) locality in this paper. For a linear code C with information (r,l,δ) locality, values at arbitrary l information coordinates of an information set I can be recovered by connecting any of δ existing pairwise disjoint local repair sets with size no more than r, where a local repair set of l coordinates is defined as the set of some other coordinates by which one can recover the values at these l coordinates. We derive a lower bound on the codeword length n for [n,k,d] linear codes with information (r,l,δ) locality. Furthermore, we indicate its tightness for some special cases. Particularly, some existing results can be deduced from our bound by restriction on parameters.

  • k Nearest Neighbor Classification Coprocessor with Weighted Clock-Mapping-Based Searching

    Fengwei AN  Lei CHEN  Toshinobu AKAZAWA  Shogo YAMASAKI  Hans Jürgen MATTAUSCH  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:3
      Page(s):
    397-403

    Nearest-neighbor-search classifiers are attractive but they have high intrinsic computational demands which limit their practical application. In this paper, we propose a coprocessor for k (k with k≥1) nearest neighbor (kNN) classification in which squared Euclidean distances (SEDs) are mapped into the clock domain for realizing high search speed and energy efficiency. The minimal SED searching is carried out by weighted frequency dividers that drastically reduce the normally exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. This also results in low power dissipation and high area-efficiency in comparison to the traditional method using large numbers of adders and comparators. The kNN classifier determines the class of an unknown input sample with a majority decision among the k nearest reference samples. The required majority-decision circuit is integrated with the clock-mapping-based minimal-SED searching architecture and proceeds with the classification immediately after identification of each of the k nearest references. A test chip in 180 nm CMOS technology, which can process 8 dimensions of 32 reference vectors in parallel, achieves low power dissipation of 40.32 mW (at 51.21 MHz clock frequency and 1.8 V supply voltage). Significantly, the distance search circuit consumes only 5.99 mW. Feature vectors with different dimensionality up to 2048 dimensions can be handled by the designed coprocessor due to a dimension extension circuit, enabling large flexibility for usage in different application.

  • A Cell Searching Technique without Double Counting for a Mobile Station with Multiple Antenna Arrays in Millimeter Wave Cellular Communication Systems

    In Su KIM  Hae-In PARK  Won Young YANG  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:3
      Page(s):
    739-748

    This paper deals with a beamforming and cell ID detection technique for a mobile station (MS) with multiple antenna arrays in millimeter wave (mm-wave) cellular communication systems. Multiple antenna arrays, required to cover the entire space around the MS, can be used to estimate the direction of arrivals (DoAs) and cell IDs, form beams in the direction of DoAs, select a serving cell in a cooperative manner, and improve BER performance by signal combining. However, a signal may enter the overlapped region formed by two adjacent arrays in the MS, resulting in a double-counting problem during the cell searching period. In this paper, a beamforming and cell detection technique without double-counting is proposed to handle this problem, and they are evaluated by simulation in a simple scenario of an mm-wave cellular system with spatial channel model (SCM).

  • A SOI Cache-Tag Memory with Dual-Rail Wordline Scheme

    Nobutaro SHIBATA  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:2
      Page(s):
    316-330

    Cache memories are the major application of high-speed SRAMs, and they are frequently installed in high performance logic VLSIs including microprocessors. This paper presents a 4-way set-associative, SOI cache-tag memory. To obtain higher operating speed with less power dissipation, we devised an I/O-separated memory cell with a dual-rail wordline, which is used to transmit complementary selection signals. The address decoding delay was shortened using CMOS dual-rail logic. To enhance the maximum operating frequency, bitline's recovery operations after writing data were eliminated using a memory array configuration without half-selected cells. Moreover, conventional, sensitive but slow differential amplifiers were successfully removed from the data I/O circuitry with a hierarchical bitline scheme. As regards the stored data management, we devised a new hardware-oriented LRU-data replacement algorithm on the basis of 6-bit directed graph. With the experimental results obtained with a test chip fabricated with a 0.25-µm CMOS/SIMOX process, the core of the cache-tag memory with a 1024-set configuration can achieve a 1.5-ns address access time under typical conditions of a 2-V power supply and 25°C. The power dissipation during standby was less than 14 µW, and that at the 500-MHz operation was 13-83 mW, depending on the bit-stream data pattern.

  • An Improved Indirect Attribute Weighted Prediction Model for Zero-Shot Image Classification

    Yuhu CHENG  Xue QIAO  Xuesong WANG  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/11/20
      Vol:
    E99-D No:2
      Page(s):
    435-442

    Zero-shot learning refers to the object classification problem where no training samples are available for testing classes. For zero-shot learning, attribute transfer plays an important role in recognizing testing classes. One popular method is the indirect attribute prediction (IAP) model, which assumes that all attributes are independent and equally important for learning the zero-shot image classifier. However, a more practical assumption is that different attributes contribute unequally to the classifier learning. We therefore propose assigning different weights for the attributes based on the relevance probabilities between the attributes and the classes. We incorporate such weighed attributes to IAP and propose a relevance probability-based indirect attribute weighted prediction (RP-IAWP) model. Experiments on four popular attributed-based learning datasets show that, when compared with IAP and RFUA, the proposed RP-IAWP yields more accurate attribute prediction and zero-shot image classification.

  • Indoor Experimental Evaluation of the QoE-Oriented Wireless LAN with Dynamic Network Reconfiguration

    Kazuto YANO  Mariko SEKIGUCHI  Tomohiro MIYASAKA  Takashi YAMAMOTO  Hirotsugu YAMAMOTO  Yoshizo TANAKA  Yoji OKADA  Masayuki ARIYOSHI  Tomoaki KUMAGAI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:2
      Page(s):
    507-522

    We have proposed a quality of experience (QoE)-oriented wireless local area network (WLAN) to provide sufficient QoE to important application flows. Unlike ordinary IEEE 802.11 WLAN, the proposed QoE-oriented WLAN dynamically performs admission control with the aid of the prediction of a “loadable capacity” criterion. This paper proposes an algorithm for dynamic network reconfiguration by centralized control among multiple basic service sets (BSSs) of the QoE-oriented WLAN, in order to maximize the number of traffic flows whose QoE requirements can be satisfied. With the proposed dynamic reconfiguration mechanism, stations (STAs) can change access point (AP) to connect. The operating frequency channel of a BSS also can be changed. These controls are performed according to the current channel occupancy rate of each BSS and the required radio resources to satisfy the QoE requirement of the traffic flow that is not allowed to transmit its data by the admission control. The effectiveness of the proposed dynamic network reconfiguration is evaluated through indoor experiments with assuming two cases. One is a 14-node experiment with QoE-oriented WLAN only, and the other is a 50-node experiment where the ordinary IEEE 802.11 WLAN and the QoE-oriented WLAN coexist. The experiment confirms that the QoE-oriented WLAN can significantly increase the number of traffic flows that satisfy their QoE requirements, total utility of network, and QoE-satisfied throughput, which is the system throughput contributing to satisfy the QoE requirement of traffic flows. It is also revealed that the QoE-oriented WLAN can protect the traffic flows in the ordinary WLAN if the border of the loadable capacity is properly set even in the environment where the hidden terminal problem occurs.

  • Compact Analytical Threshold Voltage Model of Strained Gate-All-Around MOSFET Fabricated on Si1-xGex Virtual Substrate

    Yefei ZHANG  Zunchao LI  Chuang WANG  Feng LIANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E99-C No:2
      Page(s):
    302-307

    In this paper, an analytical threshold voltage model of the strained gate-all-around MOSFET fabricated on the Si1-xGex virtual substrate is presented by solving the two-dimensional Poisson equation. The impact of key parameters such as the strain, channel length, gate oxide thickness and radius of the silicon cylinder on the threshold voltage has been investigated. It has been demonstrated that the threshold voltage decreases as the strain in the channel increases. The threshold voltage roll-off becomes severe when increasing the Ge content in the Si1-xGex virtual substrate. The model is found to tally well with the device simulator.

  • MEMD-Based Filtering Using Interval Thresholding and Similarity Measure between Pdf of IMFs

    Huan HAO  Huali WANG  Weijun ZENG  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:2
      Page(s):
    643-646

    This paper presents a novel MEMD interval thresholding denoising, where relevant modes are selected by the similarity measure between the probability density functions of the input and that of each mode. Simulation and measured EEG data processing results show that the proposed scheme achieves better performance than other traditional denoisings.

  • A Linearly and Circularly Polarized Double-Band Cross Spiral Antenna

    Mayumi MATSUNAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:2
      Page(s):
    430-438

    A novel circularly and linearly polarized loop antenna is presented. A simple loop configuration, twisted like a cross shape, has achieved radiating wide beam circular polarization simultaneously with linear polarization in two close bands. This cross configuration brings good circular polarization to a loop antenna because it uses the transmission line mode of a folded dipole antenna. For these reasons, the antenna is named the Cross Spiral Antenna (CSA). In this paper, a basic structure and the principle of the CSA radiating circular polarization with one port feeding is explained. The prototype CSA, which is tuned to around 1.57GHz and 1.6GHz, is tested for verifying the effectiveness of the suggested antenna configuration.

  • Analog and Digital Collaborative Design Techniques for Wireless SoCs

    Ryuichi FUJIMOTO  

     
    INVITED PAPER

      Vol:
    E99-A No:2
      Page(s):
    514-522

    Analog and digital collaborative design techniques for wireless SoCs are reviewed in this paper. In wireless SoCs, delicate analog performance such as sensitivity of the receiver is easily degraded due to interferences from digital circuit blocks. On the other hand, an analog performance such as distortion is strongly compensated by digital assist techniques with low power consumption. In this paper, a sensitivity recovery technique using the analog and digital collaborative design, and digital assist techniques to achieve low-power and high-performance analog circuits are presented. Such analog and digital collaborative design is indispensable for wireless SoCs.

  • Determining Image Base of Firmware Files for ARM Devices

    Ruijin ZHU  Yu-an TAN  Quanxin ZHANG  Fei WU  Jun ZHENG  Yuan XUE  

     
    PAPER-Software System

      Pubricized:
    2015/11/06
      Vol:
    E99-D No:2
      Page(s):
    351-359

    Disassembly, as a principal reverse-engineering tool, is the process of recovering the equivalent assembly instructions of a program's machine code from its binary representation. However, when disassembling a firmware file, the disassembly process cannot be performed well if the image base is unknown. In this paper, we propose an innovative method to determine the image base of a firmware file with ARM/Thumb instruction set. First, based on the characteristics of the function entry table (FET) for an ARM processor, an algorithm called FIND-FET is proposed to identify the function entry tables. Second, by using the most common instructions of function prologue and FETs, the FIND-BASE algorithm is proposed to determine the candidate image base by counting the matched functions and then choose the one with maximal matched FETs as the final result. The algorithms are applied on some firmwares collected from the Internet, and results indicate that they can effectively find out the image base for the majority of example firmware files.

  • Distributed and Scalable Directory Service in a Parallel File System

    Lixin WANG  Yutong LU  Wei ZHANG  Yan LEI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2015/10/26
      Vol:
    E99-D No:2
      Page(s):
    313-323

    One of the patterns that the design of parallel file systems has to solve stems from the difficulty of handling the metadata-intensive I/O generated by parallel applications accessing a single large directory. We demonstrate a middleware design called SFS to support existing parallel file systems for distributed and scalable directory service. SFS distributes directory entries over data servers instead of metadata servers to offer increased scalability and performance. Firstly, SFS exploits an adaptive directory partitioning based on extendible hashing to support concurrent and unsynchronized partition splitting. Secondly, SFS describes an optimization based on recursive split-ordering that emphasizes speeding up the splitting process. Thirdly, SFS applies a write-optimized index structure to convert slow, small, random metadata updates into fast, large, sequential writes. Finally, SFS gracefully tolerates stale mapping at the clients while maintaining the correctness and consistency of the system. Our performance results on a cluster of 32-servers show our implementation can deliver more than 250,000 file creations per second on average.

  • Improvement of Auctioneer's Revenue under Incomplete Information in Cognitive Radio Networks

    Jun MA  Yonghong ZHANG  Shengheng LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/11/17
      Vol:
    E99-D No:2
      Page(s):
    533-536

    In this letter, the problem of how to set reserve prices so as to improve the primary user's revenue in the second price-sealed auction under the incomplete information of secondary users' private value functions is investigated. Dirichlet process is used to predict the next highest bid based on historical data of the highest bids. Before the beginning of the next auction round, the primary user can obtain a reserve price by maximizing the additional expected reward. Simulation results show that the proposed scheme can achieve an improvement of the primary user's averaged revenue compared with several counterparts.

  • TE Plane Wave Scattering from Periodic Rough Surfaces with Perfect Conductivity: Image Integral Equation of the First Type

    Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E99-C No:2
      Page(s):
    266-274

    This paper proposes a novel image integral equation of the first type (IIE-1) for a TE plane wave scattering from periodic rough surfaces with perfect conductivity by means of the method of image Green's function. Since such an IIE-1 is valid for any incident wavenumbers including the critical wavenumbers, the analytical properties of the scattered wavefield can be generally and rigorously discussed. This paper firstly points out that the branch point singularity of the bare propagator inevitably appears on the incident wavenumber characteristics of the scattered wavefield and its related quantities just at the critical wavenumbers. By applying a quadrature method, the IIE-1 becomes a matrix equation to be numerically solved. For a periodic rough surface, several properties of the scattering are shown in figures as functions of the incident wavenumbers. It is then confirmed that the branch point singularity clearly appears in the numerical solution. Moreover, it is shown that the proposed IIE-1 gives a numerical solution satisfying sufficiently the optical theorem even for the critical wavenumbers.

  • Performance of ZigBee Based Fall Detection Alarm System

    Mohamed Hadi HABAEBI  Mabruka Mohamed AGEL  Alhareth ZYOUD  

     
    PAPER-Network

      Vol:
    E99-B No:2
      Page(s):
    385-391

    Accidental falling among elderly people has become a public health concern. Thus, there is a need for systems that detect a fall when it happens. This paper presents a portable real-time remote health monitoring system that can remotely monitor patients' movements. The system is designed and implemented using ZigBee wireless technologies, and the data is analysed using Matlab. The purpose of this research is to determine the acceleration thresholds for fall detection, using tri-axial accelerometer readings at the head, waist, and knee. Seven voluntary subjects performed purposeful falls and Activities of Daily Living (ADL). The results indicated that measurements from the waist and head can accurately detect falls; the sensitivity and reliability measurements of fall detection ranged between 80% and 90%. In contrast, the measurements showed that the knee is not a useful position for the fall detection.

1061-1080hit(5768hit)