The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ISP(425hit)

261-280hit(425hit)

  • Intra-Channel Nonlinearities and Dispersion-Management in Highly Dispersed Transmission

    Sang-Gyu PARK  Je-Myung JEONG  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E86-B No:4
      Page(s):
    1205-1211

    This study is a detailed numerical investigation on the relations between the performance of the RZ format single-channel transmission, and the chromatic dispersion of transmission fiber and pre-compensation ratio. We observed the transition from the SPM dominant low dispersion region to the intra-channel nonlinearities dominant high dispersion region, and found that the EOP is very sensitive to the pre-compensation ratio when the dispersion assumes a intermediate value. Furthermore, by analyzing the optical power-dependence of the EOP and other nonlinear impairments, we found that the amplitude fluctuation resulting from IFWM is dominant in determining the EOP in the transmission systems employing highly dispersed pulses.

  • New Multi-Luminance-Level Subfield Method for Reducing Low Gray-Level Contour in AC Plasma Display Panel

    Ki-Duck CHO  Heung-Sik TAE  Sung-Il CHIEN  

     
    LETTER-Electronic Displays

      Vol:
    E86-C No:4
      Page(s):
    682-685

    A new multi-luminance-level subfield method is proposed to reduce the low gray-level contour of an alternate current plasma display panel (AC-PDP). The minimum or maximum luminance level per sustain-cycle can be altered by simultaneously applying the proper auxiliary short pulses. As a result, the multi-luminance levels per one or two sustain pulse pairs can be expressed by properly adjusting the auxiliary short pulses for the one or two sustain-cycle subfields, thereby suppressing a low gray-level contour of AC-PDP.

  • Measurement of Polarization Mode Dispersion (PMD) with a Multiwavelength Fiber Laser

    Shinji YAMASHITA  Teruyuki BABA  Yoshinori NAMIHIRA  

     
    PAPER-Optoelectronics

      Vol:
    E86-C No:1
      Page(s):
    59-62

    We propose and demonstrate a novel method to measure the polarization mode dispersion (PMD) of optical devices. The device under test (DUT) is installed in a fiber laser cavity which can operate at multiwavelength. PMD can be evaluated by the wavelength spacing of the multiwavelength laser output spectrum. In our method, the maximum extrema wavelength is easier to be identified than in the conventional fixed-analyzer (FA) method. We measure the PMD of polarization maintaining fibers (PMFs) and the ITU-T round robin KDD samples.

  • Effectiveness of Receiver-Side Compensation against FBG Dispersion-Induced SNR Degradation in Long-Haul WDM Optical Networks

    Hideki MAEDA  Masatoyo SUMIDA  Tsutomu KUBO  Takamasa IMAI  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2943-2945

    We clarify the effectiveness of receiver-side compensation in offsetting fiber Bragg grating (FBG) dispersion induced-electrical signal-to-noise ratio (SNR) degradation in a 10 Gb/s 8-channel wavelength-division multiplexing (WDM) 6,400 km transmission system. The receiver-side compensation greatly improves the SNR degradation. The allowable accumulated FBG dispersion is -400 1000ps/nm for the worst arrangement, a single FBG at the transmitter, which is about half the accumulated fiber dispersion permissible with receiver-side compensation.

  • Correction of Numerical Phase Velocity Errors in Nonuniform FDTD Meshes

    Andreas CHRIST  Jurg FROHLICH  Niels KUSTER  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:12
      Page(s):
    2904-2915

    This paper proposes a novel method to correct numerical phase velocity errors in FDTD meshes with nonuniform step size. It enables the complete compensation of the phase velocity errors introduced by the mesh grading for one frequency and one arbitrary direction of propagation independently of the mesh grading. This permits the usage of the Total-Field-Scattered-Field formulation in connection with electrically large nonuniform FDTD meshes and allows a general reduction of the grid dispersion errors. The capabilities of the proposed method are demonstrated with the help of two examples: (1) the fields in a dielectric sphere illuminated by a plane wave are calculated and (2) a patch antenna simulation demonstrates that the uncertainty in determining its resonance frequency can be reduced by about 50%.

  • Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis

    Masanobu HARAGUCHI  Toshihiro OKAMOTO  Masuo FUKUI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2059-2064

    We calculated linear and nonlinear responses of a Kerr nonlinear microsphere sandwiched by two prisms using the excitation of whispering gallery modes due to near-field coupling. As numerical calculations, the finite-difference time-domain method that takes into account the Kerr nonlinear effect was used. We dealt with two types of spheres, i.e., the Kerr-material sphere and the dielectric sphere coated by the Kerr material. It was found that the optical switching phenomena are induced in such spheres. The switching results from the fact that the variations of the refractive index of the nonlinear spheres affect the excitation condition of the whispering gallery modes.

  • Dispersion Compensation for Ultrashort Light Pulse CDMA Communication Systems

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2776-2784

    We investigate dispersion compensation using dispersion-compensating fibers (DCFs) for ultrashort light pulse code division multiple access (CDMA) communication systems in a multi-user environment. We employ fiber link that consists of a standard single-mode fiber (SMF) connected with two different types of DCFs. Fiber dispersion can be effectively decreased by adjusting the length ratios of DCFs to SMF appropriately. Some criteria for dispersion compensation are proposed and their performances are compared. We theoretically derive a bit error rate (BER) of ultrashort light pulse CDMA systems including the effects of the dispersion and multiple access interference (MAI). Moreover, we reveal the mutual relations among BER performance, fiber dispersion, MAI, the number of chips, a bandwidth of a signal, and a transmission distance for the first time. As a result, we show that our compensation strategy improves system performance drastically.

  • A Direct-Vision 3-D Display Using a New Depth-fusing Perceptual Phenomenon in 2-D Displays with Different Depths

    Shiro SUYAMA  Hideaki TAKADA  Sakuichi OHTSUKA  

     
    PAPER-3-D Displays

      Vol:
    E85-C No:11
      Page(s):
    1911-1915

    We propose a novel three-dimensional (3-D) display using only two 2-D images displayed at different depths. It is based on a new perceptual phenomenon induced by the human binocular visual system and enables an observer using no extra equipment to perceive an apparent 3-D image of continuous depth when the luminance is divided between the 2-D images according to the 3-D image depth. Our prototype direct-vision 3-D display using this mechanism can easily produce moving 3-D color images by using conventional 2-D color displays.

  • Evaluation of Effects on Improvement in a Driver's Reaction by Spatial Warning Sounds

    Hiroyuki HOSHINO  Shin'ichi KOJIMA  Yuji UCHIYAMA  Takero HONGO  

     
    PAPER

      Vol:
    E85-D No:11
      Page(s):
    1793-1800

    Recently, information display equipment such as a navigation system has often come to be installed in a vehicle, and a variety of useful information has been offered to the driver by voice and images while driving. The necessity of improving safety when the driver receives such information has come to be stressed. As one of the means of solving this problem, we can develop a system that presents the driving and road conditions information such as a lane changing car to the driver by using a warning sound. The purpose of our study is to clarify the effectiveness of an auditory display that uses spatial sounds on such a system. An experiment for measuring the driver's reaction time and eye movements to LED lighting during actual driving has been carried out to investigate whether the spatial sound can quicken the driver's operation and decrease human error. We evaluated the effectiveness by two measures, average reaction time and the number of largely delayed reactions. We considered that the average reaction time corresponds to the quickness of the driver's operation, and the number of largely delayed reactions corresponds to the probability of human error. As a result of the experiment, the use of directional sound clearly showed better performance than the use of monaural sound and no sound in the number of largely delayed reactions. Moreover, we analyzed the factors involved in delay of the reaction by the results of eye movement measurements. Consequently, it has been found that directional sound can decrease the number of the largely delayed reactions, which lead to an accident during actual driving.

  • Fast Edge-Based Stereo Matching Algorithms through Search Space Reduction

    Payman MOALLEM  Karim FAEZ  Javad HADDADNIA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:11
      Page(s):
    1859-1871

    Finding corresponding edges is considered being the most difficult part of edge-based stereo matching algorithms. Usually, correspondence for a feature point in the first image is obtained by searching in a predefined region of the second image, based on epipolar line and maximum disparity. Reduction of search region can increase performances of the matching process, in the context of execution time and accuracy. Traditionally, hierarchical multiresolution techniques, as the fastest methods are used to decrease the search space and therefore increase the processing speed. Considering maximum of directional derivative of disparity in real scenes, we formulated some relations between maximum search space in the second images with respect to relative displacement of connected edges (as the feature points), in successive scan lines of the first images. Then we proposed a new matching strategy to reduce the search space for edge-based stereo matching algorithms. Afterward, we developed some fast stereo matching algorithms based on the proposed matching strategy and the hierarchical multiresolution techniques. The proposed algorithms have two stages: feature extraction and feature matching. We applied these new algorithms on some stereo images and compared their results with those of some hierarchical multiresolution ones. The execution times of our proposed methods are decreased between 30% to 55%, in the feature matching stage. Moreover, the execution time of the overall algorithms (including the feature extraction and the feature matching) is decreased between 15% to 40% in real scenes. Meanwhile in some cases, the accuracy is increased too. Theoretical investigation and experimental results show that our algorithms have a very good performance with real complex scenes, therefore these new algorithms are very suitable for fast edge-based stereo applications in real scenes like robotic applications.

  • A Versatile Graphic and Display Processor for Car Navigation Systems and ITS Mobile Terminals

    Takashi TANIGUCHI  Atsushi NAGATA  Tetsuji KISHI  Yasushi TAMAKOSHI  Yoshiteru MINO  Masanori HENMI  Masayuki MASUMOTO  Hiroshi MANABE  Satoshi SHIGENAGA  Atsushi KOTANI  Hiroshi KADOTA  

     
    PAPER

      Vol:
    E85-D No:11
      Page(s):
    1801-1808

    A new graphic and display processor, which is suitable for high-performance car navigation systems or next-generation ITS mobile terminals, has been developed. The performance bottleneck of conventional consumer graphic systems exists not only in the rendering performance of the graphic processor itself, but also in CPU-capability and CPU-bus bandwidth. To release this latter bottleneck, the new processor has Controller/DSP Unit and FPU for graphic-macro-command parsing and geometric operations, respectively, which used to be the CPU tasks and occupy some amount of CPU-bus bandwidth to transfer their results. The architecture of the new processor is organized so as to carry out macro-pipelined operations of graphic and display processing smoothly. One of the features of this processor is having special hardware, Polygon-Engine and Short-Vector-Accelerator, for the rapid rendering of 2D maps, where complex polygons and short line-segments are the dominant objects to be rendered. Another feature is the hardware support of multi-layer/window display with alpha-blend overlapping. This function and additional video processing capability, such as MPEG4 decoding, would be useful in the next generation intelligent terminals. The processor LSI has been successfully fabricated by using 0.18 µm standard CMOS technology. More than five million transistors are implemented on this chip. The peak rendering speed of this processor has been measured as 200 Mpixel/s at 133 MHz processor internal clock frequency. Other results of the graphic system evaluation have demonstrated that this new processor has appropriately high performance and useful functions for the next generation mobile terminals.

  • Ubiquitous Display Controlled by Mobile Terminals

    Kiyoharu AIZAWA  Kentaro KAKAMI  

     
    LETTER

      Vol:
    E85-B No:10
      Page(s):
    2214-2217

    Mobile terminals with Internet services such as i-mode are in wide use, and communication bandwidths are growing even further under 3G technology. However, displays of mobile terminals will remain small in view of their portable size and power consumption. In this paper, we propose a "ubiquitous display" that can be used in combination with mobile terminals. The user operates the mobile terminal and the ubiquitous display shows any content that requires a large screen space.

  • A Multilayered Piezoelectric Transformer Operating in the Third Order Longitudinal Mode and Its Application for an Inverter

    Mitsuru YAMAMOTO  Yasuhei SHIMADA  Yasuhiro SASAKI  Takeshi INOUE  Kentaro NAKAMURA  Sadayuki UEHA  

     
    PAPER-Electronic Displays

      Vol:
    E85-C No:10
      Page(s):
    1824-1832

    Low-profile inverter power supplies are increasingly required for backlight systems of liquid crystal displays (LCDs). A great deal of attention has been focused on the application of piezoelectric transformers (PTs) to such power supplies. To miniaturize PT inverters still further, PTs need to have sufficient high voltage-step-up-ratio, which can be achieved by a multilayered PT. First, this paper describes a method for simulating such performance using a distributed constant equivalent circuit model. The results of the simulation for a multilayered PT operated in the third order longitudinal vibration mode show that the resistance of internal electrodes causes the dominant loss factor. Next, a power inverter incorporating the multilayered PT was fabricated. This power inverter can be operated over a wide input DC voltage range from 7-20 V. Regarding a conventional inverter drive circuit, when input DC voltage range was extended, the inverter efficiency remarkably decreased. For the reason, we developed a new inverter circuit, which is equipped with an automatic drive voltage control circuit to maintain the drive voltage to the PT at a constant value. As a result, the fabricated power inverter exhibited more than 90% overall efficiency and 3.5 W output power, which is enough to light up a 12.1-inch color LCD. The maximum luminance efficiency on a light transmission plate of the backlight was as high as 30 cd/m2/W.

  • PDLC Rewritable Medium

    Keiko SEKINE  Wataru SAITO  

     
    PAPER-Optoelectronics

      Vol:
    E85-C No:5
      Page(s):
    1151-1155

    A new rewritable medium utilizing a guest-host (G-H) polymer-dispersed liquid-crystal (PDLC) film has been developed in our laboratory. The medium is thermally written and electrically erased. It is portable, like paper, and can store recorded data because of the memory effect of smectic-A liquid crystal (SmA LC), which exhibits bistable states of homeotropic and focal conic alignment. Dichroic dye is added to the SmA LC to form the G-H type. An evaluation of the characteristics revealed that this medium exhibits both high contrast and good reliability.

  • Design Considerations for Inverse Dispersion Fiber

    Kazuhide NAKAJIMA  Masaharu OHASHI  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    896-902

    In this paper, we describe design considerations for inverse dispersion fiber (IDF) whose chromatic dispersion is designed to compensate for that of conventional 1.3 µm zero-dispersion single-mode fiber (SMF). We clarify the appropriate structural parameters for W-type, triple-clad-type and ring-type refractive index profiles to realize a hybrid transmission line composed of SMF and IDF taking into consideration the bending sensitivity and the available wavelength bandwidth that achieves an average chromatic dispersion of below 1 ps/nm/km in the 1.55 µm region. We also show that, when the launched power is less than 0 dBm/ch, a hybrid transmission line composed of SMF and IDF provides better 40 Gbps 8 ch dense wavelength division multiplexing (DWDM) transmission performance than a conventional dispersion compensation scheme with a dispersion compensating fiber (DCF) module.

  • Finding Method of Radiated Emission Sources with Arbitrary Directional Current Components Utilizing CISPR Measurement System

    Yasuhiro ISHIDA  Kouji YAMASHITA  Masamitsu TOKUDA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:4
      Page(s):
    723-731

    The possibility of applying a recently proposed emission source location method, which is based on CISPR measurements, to sources with arbitrary directional current components is studied. We propose a new finding algorithm in which the horizontal and the vertical current components are estimated at the same time by taking into account the contribution of horizontal current components when calculating the vertical electric field. As a result of experimental verification by using two spherical dipole antennas as ideal emission sources, estimated values show good agreement with the original ones in the frequency range from 300 MHz to 1 GHz, where the position estimation deviation d was less than 0.15 m, the amplitude estimation deviation j was less than 2.1 dB, and furthermore the angle of current direction could be estimated. Consequently, this method with the presented new algorithm can be applied to find radiated emission sources even when the current components point to arbitrary directions.

  • PDL Suppression on Long-Period Fiber Gratings by Azimuthally Isotropic Exposure

    Yuu ISHII  Kensuke SHIMA  Satoshi OKUDE  Kenji NISHIDE  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    934-939

    We investigate a method to suppress the polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). We study the origins of the PDL and propose an azimuthally isotropic UV exposure to suppress the UV-induced birefringence and to realize low-PDL LPFGs. By using this technique and a low birefringent fiber together, the PDL of LPFGs can be reduced to a sufficiently low level required in high performance communication systems. Moreover, the validity of our theoretical modeling is confirmed by the experimental results.

  • The Novel Dispersion Reduced Fiber Bragg Grating Suitable for 10 Gb/s DWDM Systems

    Toshikazu SHIBATA  Kiyotaka MURASHIMA  Ken HASHIMOTO  Manabu SHIOZAKI  Toru IWASHIMA  Toshiaki OKUNO  Akira INOUE  Hiroshi SUGANUMA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    927-933

    For the purpose of applying to 50 GHz channel spacing 10 Gb/s DWDM systems, the dispersion reduced fiber Bragg gratings (FBG) is demonstrated. This new FBG is designed by applying in optimized cosine expansion series to the refractive index profile. The 10 π-phase shifts in the refractive index profile realize both square filtering characteristics and linear phase responses resulting in reducing group delay variation in the reflective bandwidth. The FBG, fabricated according to the new design, is tested and shows more than 30 dB isolation for the adjacent channel and less than 10 psec group delay variation in the reflective bandwidth. This small dispersion leads to vast improvement of 10 Gb/s transmission performance. The power penalty of the new FBG is suppressed to 1/6 of that of conventional FBG. Furthermore, the symmetrical refractive index profile, realized by applying a cosine expansion series, shows that these optical characteristics have no dependence of the light launching direction. From these results, this new design offers an FBG suitable for the ADM used in 10 Gb/s DWDM systems.

  • High Performance Dispersion-Flattened Hybrid Optical Transmission Lines for Ultra-Large Capacity Transoceanic Systems

    Masao TSUKITANI  Eiji YANADA  Takatoshi KATO  Eisuke SASAOKA  Yoshinori MAKIO  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    903-909

    This paper describes design optimization and performances of hybrid optical transmission lines consisting of effective-area-enlarged pure silica core fiber and dispersion compensating fiber. As a result of the design optimization, considering low nonlinearity and good bending characteristic, the developed fibers exhibit a span average loss of 0.208 dB/km, a span average dispersion slope of 0.02 ps/nm2/km and low nonlinearity with an equivalent effective area of 60 µm2. Further optimization of the relationship among the nonlinearity, the dispersion slope and the bending characteristic enables perfectly dispersion-flattened hybrid optical transmission lines exhibiting a low transmission loss of 0.211 dB/km, low nonlinearity with an equivalent effective area of 60 µm2 and small dispersion deviation of 0.03 ps/nm/km in a wavelength band wider than 40 nm.

  • Development and Future Prospect of Optical Fiber Technologies

    Naoya UCHIDA  

     
    INVITED PAPER

      Vol:
    E85-C No:4
      Page(s):
    868-880

    This paper presents a historical review of fiber technologies from the 1970s till now, focused on design, transmission characteristics, and reliability assurance of silica optical fibers. Discussion is made by dividing the period into two phases; the first phase closing nearly at the end of the 1980s and the second one starting at the same time. As for the first phase, we present designs of graded-index multimode fiber and single-mode fiber, and development of dispersion shifted fiber. Mechanical reliability assurance and loss increase phenomena due to hydrogen are also described. Development of an optical fiber amplifier triggered the start of the second phase. Due to the introduction of WDM transmission systems as well as demand on high bit-rate transmission, fiber dispersion and nonlinearity have become indispensable factors to be taken into consideration for system design and performance evaluation. We discuss novel non-zero dispersion shifted fibers and dispersion compensating fibers, developed to meet the requirements for long distance and high bit-rate WDM transmission systems. Finally, discussions are made on the future research and development items, which are necessary to realize anticipating photonic networks.

261-280hit(425hit)