The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IT(16991hit)

661-680hit(16991hit)

  • Cylindrical Massive MIMO System with Low-Complexity Angle-Based User Selection for High-Altitude Platform Stations

    Koji TASHIRO  Kenji HOSHINO  Atsushi NAGATE  

     
    PAPER-Adaptive Array Antennas/MIMO

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    449-460

    High-altitude platform stations (HAPSs) are recognized as a promising technology for coverage extension in the sixth generation (6G) mobile communications and beyond. The purpose of this study is to develop a HAPS system with a coverage radius of 100km and high capacity by focusing on the following two aspects: array antenna structure and user selection. HAPS systems must jointly use massive multiple-input multiple-output (mMIMO) and multiuser MIMO techniques to increase their capacity. However, the coverage achieved by a conventional planar array antenna is limited to a circular area with a radius of only tens of kilometers. A conventional semi-orthogonal user selection (SUS) scheme based on the orthogonality of channel vectors achieves high capacity, but it has high complexity. First, this paper proposes a cylindrical mMIMO system to achieve an ultra-wide coverage radius of 100km and high capacity. Second, this paper presents a novel angle-based user selection (AUS) scheme, where a user selection problem is formulated as a maximization of the minimum angular difference between users over all user groups. Finally, a low-complexity suboptimal algorithm (SA) for AUS is also proposed. Assuming an area with a 100km radius, simulation results demonstrate that the proposed cylindrical mMIMO system improves the signal-to-interference-plus-noise ratio by approx. 12dB at the boundary of the area, and it achieves approx. 1.5 times higher capacity than the conventional mMIMO which uses a planar array antenna. In addition, the results show that the proposed AUS scheme improves the lower percentiles in the system capacity distribution compared with SUS and basic random user selection. Furthermore, the computational complexity of the proposed SA is in the order of only 1/4000 that of SUS.

  • Opimon: A Transparent, Low-Overhead Monitoring System for OpenFlow Networks Open Access

    Wassapon WATANAKEESUNTORN  Keichi TAKAHASHI  Chawanat NAKASAN  Kohei ICHIKAWA  Hajimu IIDA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/10/21
      Vol:
    E105-B No:4
      Page(s):
    485-493

    OpenFlow is a widely adopted implementation of the Software-Defined Networking (SDN) architecture. Since conventional network monitoring systems are unable to cope with OpenFlow networks, researchers have developed various monitoring systems tailored for OpenFlow networks. However, these existing systems either rely on a specific controller framework or an API, both of which are not part of the OpenFlow specification, and thus limit their applicability. This article proposes a transparent and low-overhead monitoring system for OpenFlow networks, referred to as Opimon. Opimon monitors the network topology, switch statistics, and flow tables in an OpenFlow network and visualizes the result through a web interface in real-time. Opimon monitors a network by interposing a proxy between the controller and switches and intercepting every OpenFlow message exchanged. This design allows Opimon to be compatible with any OpenFlow switch or controller. We tested the functionalities of Opimon on a virtual network built using Mininet and a large-scale international OpenFlow testbed (PRAGMA-ENT). Furthermore, we measured the performance overhead incurred by Opimon and demonstrated that the overhead in terms of latency and throughput was less than 3% and 5%, respectively.

  • SIBYL: A Method for Detecting Similar Binary Functions Using Machine Learning

    Yuma MASUBUCHI  Masaki HASHIMOTO  Akira OTSUKA  

     
    PAPER-Dependable Computing

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:4
      Page(s):
    755-765

    Binary code similarity comparison methods are mainly used to find bugs in software, to detect software plagiarism, and to reduce the workload during malware analysis. In this paper, we propose a method to compare the binary code similarity of each function by using a combination of Control Flow Graphs (CFGs) and disassembled instruction sequences contained in each function, and to detect a function with high similarity to a specified function. One of the challenges in performing similarity comparisons is that different compile-time optimizations and different architectures produce different binary code. The main units for comparing code are instructions, basic blocks and functions. The challenge of functions is that they have a graph structure in which basic blocks are combined, making it relatively difficult to derive similarity. However, analysis tools such as IDA, display the disassembled instruction sequence in function units. Detecting similarity on a function basis has the advantage of facilitating simplified understanding by analysts. To solve the aforementioned challenges, we use machine learning methods in the field of natural language processing. In this field, there is a Transformer model, as of 2017, that updates each record for various language processing tasks, and as of 2021, Transformer is the basis for BERT, which updates each record for language processing tasks. There is also a method called node2vec, which uses machine learning techniques to capture the features of each node from the graph structure. In this paper, we propose SIBYL, a combination of Transformer and node2vec. In SIBYL, a method called Triplet-Loss is used during learning so that similar items are brought closer and dissimilar items are moved away. To evaluate SIBYL, we created a new dataset using open-source software widely used in the real world, and conducted training and evaluation experiments using the dataset. In the evaluation experiments, we evaluated the similarity of binary codes across different architectures using evaluation indices such as Rank1 and MRR. The experimental results showed that SIBYL outperforms existing research. We believe that this is due to the fact that machine learning has been able to capture the features of the graph structure and the order of instructions on a function-by-function basis. The results of these experiments are presented in detail, followed by a discussion and conclusion.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Study on Cloud-Based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments

    Seiji YOSHIDA  

     
    PAPER-Satellite Navigation

      Pubricized:
    2021/10/13
      Vol:
    E105-B No:4
      Page(s):
    388-398

    Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.

  • RF Signal Frequency Identification in a Direct RF Undersampling Multi-Band Real-Time Spectrum Monitor for Wireless IoT Usage

    Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Suguru KAMEDA  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER-Software Defined Radio

      Pubricized:
    2021/10/12
      Vol:
    E105-B No:4
      Page(s):
    461-471

    To reduce the complexity of direct radio frequency (RF) undersampling real-time spectrum monitoring in wireless Internet of Things (IoT) bands (920MHz, 2.4GHz, and 5 GHz bands), a design method of sampling frequencies is proposed in this paper. The Direct RF Undersampling receiver architecture enables the use of ADC with sampling clock lower frequency than receiving RF signal, but it needs RF signal identification signal processing from folded spectrums with multiple sampling clock frequencies. The proposed design method allows fewer sampling frequencies to be used than the conventional design method for continuous frequency range (D.C. to 5GHz-band). The proposed method reduced 2 sampling frequencies in wireless IoT bands case compared with the continuous range. The design result using the proposed method is verified by measurement.

  • Analysis of an InSb Sphere Array on a Dielectric Substrate in the THz Regime

    Jun SHIBAYAMA  Takuma KURODA  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Pubricized:
    2021/09/03
      Vol:
    E105-C No:4
      Page(s):
    159-162

    A periodic array of InSb spheres on a substrate is numerically analyzed at terahertz frequencies. The incident field is shown to be coupled to the substrate due to the guided-mode resonance. The effect of the background refractive index on the transmission characteristics is investigated for sensor applications.

  • Volume Integral Equations Combined with Orthogonality of Modes for Analysis of Two-Dimensional Optical Slab Waveguide

    Masahiro TANAKA  

     
    PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    137-145

    Volume integral equations combined with orthogonality of guided mode and non-guided field are proposed for the TE incidence of two-dimensional optical slab waveguide. The slab waveguide is assumed to satisfy the single mode condition. The formulation of the integral equations are described in detail. The matrix equation obtained by applying the method of moments to the integral equations is shown. Numerical results for step, gap, and grating waveguides are given. They are compared to published papers to validate the proposed method.

  • Discovering Message Templates on Large Scale Bitcoin Abuse Reports Using a Two-Fold NLP-Based Clustering Method

    Jinho CHOI  Taehwa LEE  Kwanwoo KIM  Minjae SEO  Jian CUI  Seungwon SHIN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/01/11
      Vol:
    E105-D No:4
      Page(s):
    824-827

    Bitcoin is currently a hot issue worldwide, and it is expected to become a new legal tender that replaces the current currency started with El Salvador. Due to the nature of cryptocurrency, however, difficulties in tracking led to the arising of misuses and abuses. Consequently, the pain of innocent victims by exploiting these bitcoins abuse is also increasing. We propose a way to detect new signatures by applying two-fold NLP-based clustering techniques to text data of Bitcoin abuse reports received from actual victims. By clustering the reports of text data, we were able to cluster the message templates as the same campaigns. The new approach using the abuse massage template representing clustering as a signature for identifying abusers is much efficacious.

  • A Deep Q-Network Based Intelligent Decision-Making Approach for Cognitive Radar

    Yong TIAN  Peng WANG  Xinyue HOU  Junpeng YU  Xiaoyan PENG  Hongshu LIAO  Lin GAO  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/10/15
      Vol:
    E105-A No:4
      Page(s):
    719-726

    The electromagnetic environment is increasingly complex and changeable, and radar needs to meet the execution requirements of various tasks. Modern radars should improve their intelligence level and have the ability to learn independently in dynamic countermeasures. It can make the radar countermeasure strategy change from the traditional fixed anti-interference strategy to dynamically and independently implementing an efficient anti-interference strategy. Aiming at the performance optimization of target tracking in the scene where multiple signals coexist, we propose a countermeasure method of cognitive radar based on a deep Q-learning network. In this paper, we analyze the tracking performance of this method and the Markov Decision Process under the triangular frequency sweeping interference, respectively. The simulation results show that reinforcement learning has substantial autonomy and adaptability for solving such problems.

  • Efficient Computation of Betweenness Centrality by Graph Decompositions and Their Applications to Real-World Networks

    Tatsuya INOHA  Kunihiko SADAKANE  Yushi UNO  Yuma YONEBAYASHI  

     
    PAPER

      Pubricized:
    2021/11/08
      Vol:
    E105-D No:3
      Page(s):
    451-458

    Betweenness centrality is one of the most significant and commonly used centralities, where centrality is a notion of measuring the importance of nodes in networks. In 2001, Brandes proposed an algorithm for computing betweenness centrality efficiently, and it can compute those values for all nodes in O(nm) time for unweighted networks, where n and m denote the number of nodes and links in networks, respectively. However, even Brandes' algorithm is not fast enough for recent large-scale real-world networks, and therefore, much faster algorithms are expected. The objective of this research is to theoretically improve the efficiency of Brandes' algorithm by introducing graph decompositions, and to verify the practical effectiveness of our approaches by implementing them as computer programs and by applying them to various kinds of real-world networks. A series of computational experiments shows that our proposed algorithms run several times faster than the original Brandes' algorithm, which are guaranteed by theoretical analyses.

  • Sublinear Computation Paradigm: Constant-Time Algorithms and Sublinear Progressive Algorithms Open Access

    Kyohei CHIBA  Hiro ITO  

     
    INVITED PAPER-Algorithms and Data Structures

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:3
      Page(s):
    131-141

    The challenges posed by big data in the 21st Century are complex: Under the previous common sense, we considered that polynomial-time algorithms are practical; however, when we handle big data, even a linear-time algorithm may be too slow. Thus, sublinear- and constant-time algorithms are required. The academic research project, “Foundations of Innovative Algorithms for Big Data,” which was started in 2014 and will finish in September 2021, aimed at developing various techniques and frameworks to design algorithms for big data. In this project, we introduce a “Sublinear Computation Paradigm.” Toward this purpose, we first provide a survey of constant-time algorithms, which are the most investigated framework of this area, and then present our recent results on sublinear progressive algorithms. A sublinear progressive algorithm first outputs a temporary approximate solution in constant time, and then suggests better solutions gradually in sublinear-time, finally finds the exact solution. We present Sublinear Progressive Algorithm Theory (SPA Theory, for short), which enables to make a sublinear progressive algorithm for any property if it has a constant-time algorithm and an exact algorithm (an exponential-time one is allowed) without losing any computation time in the big-O sense.

  • An Overflow/Underflow-Free Fixed-Point Bit-Width Optimization Method for OS-ELM Digital Circuit Open Access

    Mineto TSUKADA  Hiroki MATSUTANI  

     
    PAPER

      Pubricized:
    2021/09/17
      Vol:
    E105-A No:3
      Page(s):
    437-447

    Currently there has been increasing demand for real-time training on resource-limited IoT devices such as smart sensors, which realizes standalone online adaptation for streaming data without data transfers to remote servers. OS-ELM (Online Sequential Extreme Learning Machine) has been one of promising neural-network-based online algorithms for on-chip learning because it can perform online training at low computational cost and is easy to implement as a digital circuit. Existing OS-ELM digital circuits employ fixed-point data format and the bit-widths are often manually tuned, however, this may cause overflow or underflow which can lead to unexpected behavior of the circuit. For on-chip learning systems, an overflow/underflow-free design has a great impact since online training is continuously performed and the intervals of intermediate variables will dynamically change as time goes by. In this paper, we propose an overflow/underflow-free bit-width optimization method for fixed-point digital circuits of OS-ELM. Experimental results show that our method realizes overflow/underflow-free OS-ELM digital circuits with 1.0x - 1.5x more area cost compared to the baseline simulation method where overflow or underflow can happen.

  • Comparison of a Probabilistic Returning Scheme for Preemptive and Non-Preemptive Schemes in Cognitive Radio Networks with Two Classes of Secondary Users

    Yuan ZHAO  Wuyi YUE  Yutaka TAKAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    338-346

    In this paper, we consider the transmission needs of communication networks for two classes of secondary users (SUs), named SU1 and SU2 (lowest priority) in cognitive radio networks (CRNs). In such CRNs, primary users (PUs) have preemptive priority over both SU1's users (SU1s) and SU2's users (SU2s). We propose a preemptive scheme (referred to as the P Scheme) and a non-preemptive scheme (referred to as the Non-P Scheme) when considering the interactions between SU1s and SU2s. Focusing on the transmission interruptions to SU2 packets, we present a probabilistic returning scheme with a returning probability to realize feedback control for SU2 packets. We present a Markov chain model to develop some formulas for SU1 and SU2 packets, and compare the influences of the P Scheme and the Non-P Scheme in the proposed probabilistic returning scheme. Numerical analyses compare the impact of the returning probability on the P Scheme and the Non-P Scheme. Furthermore, we optimize the returning probability and compare the optimal numerical results yielded by the P Scheme and the Non-P Scheme.

  • Upper Bound on Privacy-Utility Tradeoff Allowing Positive Excess Distortion Probability Open Access

    Shota SAITO  Toshiyasu MATSUSHIMA  

     
    LETTER-Information Theory

      Pubricized:
    2021/07/14
      Vol:
    E105-A No:3
      Page(s):
    425-427

    This letter investigates the information-theoretic privacy-utility tradeoff. We analyze the minimum information leakage (f-leakage) under the utility constraint that the excess distortion probability is allowed up to ε∈[0, 1). The derived upper bound is characterized by the ε-cutoff random transformation and a distortion ball.

  • Fault Injection Attacks Utilizing Waveform Pattern Matching against Neural Networks Processing on Microcontroller Open Access

    Yuta FUKUDA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/09/22
      Vol:
    E105-A No:3
      Page(s):
    300-310

    Deep learning applications have often been processed in the cloud or on servers. Still, for applications that require privacy protection and real-time processing, the execution environment is moved to edge devices. Edge devices that implement a neural network (NN) are physically accessible to an attacker. Therefore, physical attacks are a risk. Fault attacks on these devices are capable of misleading classification results and can lead to serious accidents. Therefore, we focus on the softmax function and evaluate a fault attack using a clock glitch against NN implemented in an 8-bit microcontroller. The clock glitch is used for fault injection, and the injection timing is controlled by monitoring the power waveform. The specific waveform is enrolled in advance, and the glitch timing pulse is generated by the sum of absolute difference (SAD) matching algorithm. Misclassification can be achieved by appropriately injecting glitches triggered by pattern detection. We propose a countermeasure against fault injection attacks that utilizes the randomization of power waveforms. The SAD matching is disabled by random number initialization on the summation register of the softmax function.

  • The Huffman Tree Problem with Upper-Bounded Linear Functions

    Hiroshi FUJIWARA  Yuichi SHIRAI  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:3
      Page(s):
    474-480

    The construction of a Huffman code can be understood as the problem of finding a full binary tree such that each leaf is associated with a linear function of the depth of the leaf and the sum of the function values is minimized. Fujiwara and Jacobs extended this to a general function and proved the extended problem to be NP-hard. The authors also showed the case where the functions associated with leaves are each non-decreasing and convex is solvable in polynomial time. However, the complexity of the case of non-decreasing non-convex functions remains unknown. In this paper we try to reveal the complexity by considering non-decreasing non-convex functions each of which takes the smaller value of either a linear function or a constant. As a result, we provide a polynomial-time algorithm for two subclasses of such functions.

  • An Improvement of the Biased-PPSZ Algorithm for the 3SAT Problem

    Tong QIN  Osamu WATANABE  

     
    PAPER

      Pubricized:
    2021/09/08
      Vol:
    E105-D No:3
      Page(s):
    481-490

    Hansen, Kaplan, Zamir and Zwick (STOC 2019) introduced a systematic way to use “bias” for predicting an assignment to a Boolean variable in the process of PPSZ and showed that their biased PPSZ algorithm achieves a relatively large success probability improvement of PPSZ for Unique 3SAT. We propose an additional way to use “bias” and show by numerical analysis that the improvement gets increased further.

  • Weakly Byzantine Gathering with a Strong Team

    Jion HIROSE  Junya NAKAMURA  Fukuhito OOSHITA  Michiko INOUE  

     
    PAPER

      Pubricized:
    2021/10/11
      Vol:
    E105-D No:3
      Page(s):
    541-555

    We study the gathering problem requiring a team of mobile agents to gather at a single node in arbitrary networks. The team consists of k agents with unique identifiers (IDs), and f of them are weakly Byzantine agents, which behave arbitrarily except falsifying their identifiers. The agents move in synchronous rounds and cannot leave any information on nodes. If the number of nodes n is given to agents, the existing fastest algorithm tolerates any number of weakly Byzantine agents and achieves gathering with simultaneous termination in O(n4·|Λgood|·X(n)) rounds, where |Λgood| is the length of the maximum ID of non-Byzantine agents and X(n) is the number of rounds required to explore any network composed of n nodes. In this paper, we ask the question of whether we can reduce the time complexity if we have a strong team, i.e., a team with a few Byzantine agents, because not so many agents are subject to faults in practice. We give a positive answer to this question by proposing two algorithms in the case where at least 4f2+9f+4 agents exist. Both the algorithms assume that the upper bound N of n is given to agents. The first algorithm achieves gathering with non-simultaneous termination in O((f+|&Lambdagood|)·X(N)) rounds. The second algorithm achieves gathering with simultaneous termination in O((f+|&Lambdaall|)·X(N)) rounds, where |&Lambdaall| is the length of the maximum ID of all agents. The second algorithm significantly reduces the time complexity compared to the existing one if n is given to agents and |&Lambdaall|=O(|&Lambdagood|) holds.

  • Fast Neighborhood Rendezvous

    Ryota EGUCHI  Naoki KITAMURA  Taisuke IZUMI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/12/17
      Vol:
    E105-D No:3
      Page(s):
    597-610

    In the rendezvous problem, two computing entities (called agents) located at different vertices in a graph have to meet at the same vertex. In this paper, we consider the synchronous neighborhood rendezvous problem, where the agents are initially located at two adjacent vertices. While this problem can be trivially solved in O(Δ) rounds (Δ is the maximum degree of the graph), it is highly challenging to reveal whether that problem can be solved in o(Δ) rounds, even assuming the rich computational capability of agents. The only known result is that the time complexity of O($O(sqrt{n})$) rounds is achievable if the graph is complete and agents are probabilistic, asymmetric, and can use whiteboards placed at vertices. Our main contribution is to clarify the situation (with respect to computational models and graph classes) admitting such a sublinear-time rendezvous algorithm. More precisely, we present two algorithms achieving fast rendezvous additionally assuming bounded minimum degree, unique vertex identifier, accessibility to neighborhood IDs, and randomization. The first algorithm runs within $ ilde{O}(sqrt{nDelta/delta} + n/delta)$ rounds for graphs of the minimum degree larger than $sqrt{n}$, where n is the number of vertices in the graph, and δ is the minimum degree of the graph. The second algorithm assumes that the largest vertex ID is O(n), and achieves $ ilde{O}left( rac{n}{sqrt{delta}} ight)$-round time complexity without using whiteboards. These algorithms attain o(Δ)-round complexity in the case of $delta = {omega}(sqrt{n} log n)$ and δ=ω(n2/3log4/3n) respectively. We also prove that four unconventional assumptions of our algorithm, bounded minimum degree, accessibility to neighborhood IDs, initial distance one, and randomization are all inherently necessary for attaining fast rendezvous. That is, one can obtain the Ω(n)-round lower bound if either one of them is removed.

661-680hit(16991hit)