The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LD(1872hit)

461-480hit(1872hit)

  • Local Reconstruction Error Alignment: A Fast Unsupervised Feature Selection Algorithm for Radar Target Clustering

    Jianqiao WANG  Yuehua LI  Jianfei CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    357-360

    Observed samples in wideband radar are always represented as nonlinear points in high dimensional space. In this paper, we consider the feature selection problem in the scenario of wideband radar target clustering. Inspired by manifold learning, we propose a novel feature selection algorithm, called Local Reconstruction Error Alignment (LREA), to select the features that can best preserve the underlying manifold structure. We first select the features that minimize the reconstruction error in every neighborhood. Then, we apply the alignment technique to extend the local optimal feature sequence to a global unique feature sequence. Experiments demonstrate the effectiveness of our proposed method.

  • PWG: Progressive Weight-Growth Algorithm for LDPC Codes

    Xiangxue LI  Qingji ZHENG  Haifeng QIAN  Dong ZHENG  Kefei CHEN  

     
    LETTER-Coding Theory

      Vol:
    E97-A No:2
      Page(s):
    685-689

    Given specified parameters, the number of check nodes, the expected girth and the variable node degrees, the Progressive Weight-Growth (PWG) algorithm is proposed to generate high rate low-density parity-check (LDPC) codes. Based on the theoretic foundation that is to investigate the girth impact by adding/removing variable nodes and edges of the Tanner graph, the PWG progressively increases column weights of the parity check matrix without violating the constraints defined by the given parameters. The analysis of the computational complexity and the simulation of code performance show that the LDPC codes by the PWG provide better or comparable performance in comparison with LDPC codes by some well-known methods (e.g., Mackay's random constructions, the PEG algorithm, and the bit-filling algorithm).

  • Electromagnetic Compatibility of Resonance Coupling Wireless Power Transfer in On-Line Electric Vehicle System

    Yangbae CHUN  Seongwook PARK  Jonghoon KIM  Jiseong KIM  Hongseok KIM  Joungho KIM  Nam KIM  Seungyoung AHN  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E97-B No:2
      Page(s):
    416-423

    We present the concept of an on-line electric vehicle (OLEV) and its wireless power transfer mechanism and analyze the electromagnetic compatibility characteristics. As magnetic fields transfer 100kW of power to the vehicle, reduction of electromagnetic field (EMF) noise is a critical issue for protection of the human body. Also, with respect to electromagnetic interference (EMI) noise, a proper measurement method has not yet been established for this low frequency high power system. In this paper, low frequency magnetic field shielding methods and application of the shields to the OLEV system are presented. Furthermore, a standard low frequency magnetic field measurement is suggested as an EMI test.

  • A Symbol Based Distributed Video Coding System Using Multiple Hypotheses

    Daniel Johannes LOUW  Haruhiko KANEKO  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:2
      Page(s):
    632-641

    Single view distributed video coding (DVC) is a coding method that allows for the computational complexity of the system to be shifted from the encoder to the decoder. This property promotes the use of DVC in systems where processing power or energy use at the encoder is constrained. Examples include wireless devices and surveillance. This paper proposes a multi-hypothesis transform domain single-view DVC system that performs symbol level coding with a non-binary low-density parity-check code. The main contributions of the system relate to the methods used for combining multiple side information hypotheses at the decoder. The system also combines interpolation and extrapolation in the side information creation process to improve the performance of the system over larger group-of-picture sizes.

  • A Sparse Modeling Method Based on Reduction of Cost Function in Regularized Forward Selection

    Katsuyuki HAGIWARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:1
      Page(s):
    98-106

    Regularized forward selection is viewed as a method for obtaining a sparse representation in a nonparametric regression problem. In regularized forward selection, regression output is represented by a weighted sum of several significant basis functions that are selected from among a large number of candidates by using a greedy training procedure in terms of a regularized cost function and applying an appropriate model selection method. In this paper, we propose a model selection method in regularized forward selection. For the purpose, we focus on the reduction of a cost function, which is brought by appending a new basis function in a greedy training procedure. We first clarify a bias and variance decomposition of the cost reduction and then derive a probabilistic upper bound for the variance of the cost reduction under some conditions. The derived upper bound reflects an essential feature of the greedy training procedure; i.e., it selects a basis function which maximally reduces the cost function. We then propose a thresholding method for determining significant basis functions by applying the derived upper bound as a threshold level and effectively combining it with the leave-one-out cross validation method. Several numerical experiments show that generalization performance of the proposed method is comparable to that of the other methods while the number of basis functions selected by the proposed method is greatly smaller than by the other methods. We can therefore say that the proposed method is able to yield a sparse representation while keeping a relatively good generalization performance. Moreover, our method has an advantage that it is free from a selection of a regularization parameter.

  • Method of Image Green's Function in Grating Theory: Extinction Error Field

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Periodic Structures

      Vol:
    E97-C No:1
      Page(s):
    40-44

    This paper deals with an integral equation method for analyzing the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface. In the region below the periodic surface, the extinction theorem holds, and the total field vanishes if the field solution is determined exactly. For an approximate solution, the extinction theorem does not hold but an extinction error field appears. By use of an image Green's function, new formulae are given for the extinction error field and the mean square extinction error (MSEE), which may be useful as a validity criterion. Numerical examples are given to demonstrate that the formulae work practically even at a critical angle of incidence.

  • Bit-Parallel Cubing Computation over GF(3m) for Irreducible Trinomials

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E97-A No:1
      Page(s):
    347-353

    We propose a parallel pth powering method over an arbitrary finite field GF(pm). Using the proposed method, we present the explicit formulae for the computation of cubing over a ternary field GF(3m) which is defined by irreducible trinomials. We show that the field cubing computation for irreducible trinomials, which plays an important role in calculating pairing, can be implemented very efficiently.

  • Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing over GF(3n)

    Naoyuki SHINOHARA  Takeshi SHIMOYAMA  Takuya HAYASHI  Tsuyoshi TAKAGI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    236-244

    The security of pairing-based cryptosystems is determined by the difficulty of solving the discrete logarithm problem (DLP) over certain types of finite fields. One of the most efficient algorithms for computing a pairing is the ηT pairing over supersingular curves on finite fields of characteristic 3. Indeed many high-speed implementations of this pairing have been reported, and it is an attractive candidate for practical deployment of pairing-based cryptosystems. Since the embedding degree of the ηT pairing is 6, we deal with the difficulty of solving a DLP over the finite field GF(36n), where the function field sieve (FFS) is known as the asymptotically fastest algorithm of solving it. Moreover, several efficient algorithms are employed for implementation of the FFS, such as the large prime variation. In this paper, we estimate the time complexity of solving the DLP for the extension degrees n=97, 163, 193, 239, 313, 353, and 509, when we use the improved FFS. To accomplish our aim, we present several new computable estimation formulas to compute the explicit number of special polynomials used in the improved FFS. Our estimation contributes to the evaluation for the key length of pairing-based cryptosystems using the ηT pairing.

  • Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Takayuki NOZAKI  Masaki MAEHARA  Kenta KASAI  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E96-A No:12
      Page(s):
    2382-2390

    This paper derives the average symbol and bit weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rates of the average weight distributions in the limit of large code length. We show the condition that the typical minimum distances linearly grow with the code length.

  • On the Dependence of Error Performance of Spatially Coupled LDPC Codes on Their Design Parameters

    Hiroyuki IHARA  Tomoharu SHIBUYA  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:12
      Page(s):
    2447-2451

    Spatially coupled (SC) low-density parity-check (LDPC) codes are defined by bipartite graphs that are obtained by assembling prototype graphs. The combination and connection of prototype graphs are designated by specifying some parameters, and Kudekar et al. showed that BP threshold of the ensemble of SC LDPC codes agrees with MAP threshold of the ensemble of regular LDPC codes when those parameters are grown up so that the code length tends to infinity. When we design SC LDPC codes with practical code length, however, it is not clear how to set those parameters to enhance the performance of SC LDPC codes. In this paper, we provide the result of numerical experiments that suggest the dependence of error performance of SC LDPC codes over BEC on their design parameters.

  • Robust Multi-Bit Watermarking for Free-View Television Using Light Field Rendering

    Huawei TIAN  Yao ZHAO  Zheng WANG  Rongrong NI  Lunming QIN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:12
      Page(s):
    2820-2829

    With the rapid development of multi-view video coding (MVC) and light field rendering (LFR), Free-View Television (FTV) has emerged as new entrainment equipment, which can bring more immersive and realistic feelings for TV viewers. In FTV broadcasting system, the TV-viewer can freely watch a realistic arbitrary view of a scene generated from a number of original views. In such a scenario, the ownership of the multi-view video should be verified not only on the original views, but also on any virtual view. However, capacities of existing watermarking schemes as copyright protection methods for LFR-based FTV are only one bit, i.e., presence or absence of the watermark, which seriously impacts its usage in practical scenarios. In this paper, we propose a robust multi-bit watermarking scheme for LFR-based free-view video. The direct-sequence code division multiple access (DS-CDMA) watermark is constructed according to the multi-bit message and embedded into DCT domain of each view frame. The message can be extracted bit-by-bit from a virtual frame generated at an arbitrary view-point with a correlation detector. Furthermore, we mathematically prove that the watermark can be detected from any virtual view. Experimental results also show that the watermark in FTV can be successfully detected from a virtual view. Moreover, the proposed watermark method is robust against common signal processing attacks, such as Gaussian filtering, salt & peppers noising, JPEG compression, and center cropping.

  • Standard Cell Structure with Flexible P/N Well Boundaries for Near-Threshold Voltage Operation

    Shinichi NISHIZAWA  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER-Physical Level Design

      Vol:
    E96-A No:12
      Page(s):
    2499-2507

    This paper propose a structure of standard cells where the P/N boundary ratio of each cell can be independently customized for near-threshold operation. Lowering the supply voltage is one of the most promising approaches for reducing the power consumption of VLSI circuit, however, this causes an increase of imbalance between rise and fall delays for cells having transistor stacks. Conventional cell library with fixed P/N boundary is not efficient to compensate this delay imbalance. Proposed structure achieves individual P/N boundary ratio optimization for each standard cell, therefore it cancels the imbalance between rise and fall delays at the expense of cell area. Proposed structure is verified using measured result of Ring Oscillator circuits and simulation result of benchmark circuits in 65nm CMOS. The experiments with ISCAS'85 benchmark circuits demonstrate that the standard cell library consisting of the proposed cells reduces the power consumption of the benchmark circuits by 16% on average without increasing the circuit area, compared to that of the same circuit synthesized with a library which is not optimized for the near-threshold operation.

  • Performance Evaluation of Non-binary LDPC Coding and Iterative Decoding System for BPM R/W Channel with Write-Errors

    Yasuaki NAKAMURA  Yoshihiro OKAMOTO  Hisashi OSAWA  Hajime AOI  Hiroaki MURAOKA  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1497-1503

    Bit-patterned medium (BPM) is one of the promising approaches for ultra-high density magnetic recording systems. However, BPM requires precise write synchronization, and exhibits write-errors due to insufficient write field gradient, medium switching field distribution (SFD), demagnetization field from adjacent islands, and island position variation. In this paper, an iterative decoding system using a non-binary low-density parity-check (LDPC) code is considered for a BPM R/W channel with write-errors at an areal recording density of 2Tbit/inch2 including the coding rate loss. The performance of the iterative decoding system using the non-binary LDPC code over the Galois field GF(28) is evaluated by computer simulation, and it is compared with the conventional iterative decoding system using a binary LDPC code. The results show that the non-binary LDPC system has a larger write margin than the binary LDPC system.

  • Design of Quasi-Cyclic LDPC Codes with Maximized Girth Property

    Watid PHAKPHISUT  Patanasak PROMPAKDEE  Pornchai SUPNITHI  

     
    PAPER-Coding Theory

      Vol:
    E96-A No:11
      Page(s):
    2128-2133

    In this paper, we propose the construction of quasi-cyclic (QC) LDPC codes based on the modified progressive edge-growth (PEG) algorithm to achieve the maximum local girth. Although the previously designed QC-LDPC codes based on the PEG algorithm has more flexible code rates than the conventional QC-LDPC code, in the design process, multiple choices of the edges may be chosen. In the proposed algorithm, we aim to maximize the girth property by choosing the suitable edges and thus improve the error correcting performance. Simulation results show that the QC-LDPC codes constructed from the proposed method give higher proportion of high local girths than other methods, particularly, at high code rates. In addition, the proposed codes offer superior bit error rate and block error rate performances to the previous PEG-QC codes over the additive white Gaussian noise (AWGN) channel.

  • Bitstream Protection in Dynamic Partial Reconfiguration Systems Using Authenticated Encryption

    Yohei HORI  Toshihiro KATASHITA  Hirofumi SAKANE  Kenji TODA  Akashi SATOH  

     
    PAPER-Computer System

      Vol:
    E96-D No:11
      Page(s):
    2333-2343

    Protecting the confidentiality and integrity of a configuration bitstream is essential for the dynamic partial reconfiguration (DPR) of field-programmable gate arrays (FPGAs). This is because erroneous or falsified bitstreams can cause fatal damage to FPGAs. In this paper, we present a high-speed and area-efficient bitstream protection scheme for DPR systems using the Advanced Encryption Standard with Galois/Counter Mode (AES-GCM), which is an authenticated encryption algorithm. Unlike many previous studies, our bitstream protection scheme also provides a mechanism for error recovery and tamper resistance against configuration block deletion, insertion, and disorder. The implementation and evaluation results show that our DPR scheme achieves a higher performance, in terms of speed and area, than previous methods.

  • Dynamically Constrained Vector Field Convolution for Active Contour Model

    Guoqi LIU  Zhiheng ZHOU  Shengli XIE  Dongcheng WU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:11
      Page(s):
    2500-2503

    Vector field convolution (VFC) provides a successful external force for an active contour model. However, it fails to extract the complex geometries, especially the deep concavity when the initial contour is set outside the object or the concave region. In this letter, dynamically constrained vector field convolution (DCVFC) external force is proposed to solve this problem. In DCVFC, the indicator function with respect to the evolving contour is introduced to restrain the correlation of external forces generated by different edges, and the forces dynamically generated by complex concave edges gradually make the contour move to the object. On the other hand, traditional vector field, a component of the proposed DCVFC, makes the evolving contour stop at the object boundary. The connections between VFC and DCVFC are also analyzed. DCVFC maintains desirable properties of VFC, such as robustness to initialization. Experimental results demonstrate that DCVFC snake provides a much better segmentation than VFC snake.

  • Analytic Ldi/dt Effect Model Based on Float Ground in Plasma Display Panel Driver System

    Xiaoying HE  Weifeng SUN  Guohuan HUA  Shen XU  Shengli LU  

     
    PAPER-Electronic Displays

      Vol:
    E96-C No:11
      Page(s):
    1428-1435

    An Ldi/dt effect model based on float ground in a plamsa display panel (PDP) driver system is established in this paper. The model is to analyze the noise which appears in power supply and float ground pins of driver integrated circuits. Considering printed circuit board wiring and switching parasitic parameters, firstly Ldi/dt effect due to integrated circuits transition, is explained on the entire float-ground circuit operation. Then an analytic model is deduced and validated, and good agreement is obtained with experimental results. Based on the model, sensitivity analyses of key parameters are done. Finally, design optimisations to prevent the Ldi/dt effect based on float ground are proposed and verified in a PDP system.

  • Single-Wavelength Emission by Using 1 × N Active Multi-Mode Interferometer Laser Diode

    Yasuhiro HINOKUMA  Zhipeng YUEN  Teppei FUKUDA  Takahira MITOMI  Kiichi HAMAMOTO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E96-C No:11
      Page(s):
    1413-1419

    1 × N active multi-mode interferometer laser diode (MMI LD) is proposed and demonstrated to realize single-wavelength edge-emitter without using grating configuration. As the 1 × N active-MMI LDs are based on longitudinal mode interference, they have a potential of single-wavelength emission without incorporating any grating layer on/beneath active layer. The fabricated devices showed single-wavelength emission with a side mode suppression ratio (SMSR) of 12dB at a wavelength of 1.57µm.

  • Photo-Induced Threshold and Onset Voltage Shifts in Organic Thin-Film Transistors Open Access

    Ichiro FUJIEDA  Tse Nga NG  Tomoya HOSHINO  Tomonori HANASAKI  

     
    INVITED PAPER

      Vol:
    E96-C No:11
      Page(s):
    1360-1366

    We have studied photo-induced effects in a p-type transistor based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) derivative. Repetition of blue light irradiation and electrical characterization under dark reveals that its threshold voltage gradually shifts in the positive direction as the cumulative exposure time increases. This shift is slowly reversed when the transistor is stored under dark. The onset voltage defined as the gate bias at which the sub-threshold current exceeds a certain level behaves in a similar manner. Mobility remains more or less the same during this exposure period and the storage period. Time evolution of the threshold voltage shift is fit by a model assuming two charged meta-stable states decaying independently. A set of parameters consists of a decay constant for each state and the ratio of the two states. A single parameter set reproduces the positive shift during the exposure period and the negative shift during the storage period. Time evolution of the onset voltage is reproduced by the same parameter set. We have also studied photo-induced effects in two types of n-type transistors where either a pure solution of a perylene derivative or a solution mixed with an insulating polymer is used for printing each semiconductor layer. A similar behavior is observed for these transistors: blue light irradiation under a negative gate bias shifts the threshold and the onset voltages in the negative direction and these shifts are reversed under dark. The two-component model reproduces the behavior of these voltage shifts and the parameter set is slightly different among the two transistors made from different semiconductor solutions. The onset voltage shift is well correlated to the threshold voltage shift for the three types of organic transistors studied here. The onset voltage is more sensitive to illumination than the threshold voltage and its sensitivity differs among transistors.

  • Resonances and Field Enhancement in Cylindrical Electromagnetic Bandgap Structures

    Vakhtang JANDIERI  Kiyotoshi YASUMOTO  Young-Ki CHO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E96-C No:11
      Page(s):
    1436-1439

    Electromagnetic scattering and radiation in cylindrical electromagnetic bandgap (EBG) structure is analyzed. The radiated field from a line source placed inside the eccentric configuration of the cylindrical EBG structure and plane wave incident on the cylindrical EBG structure is numerically studied based on the method proposed by the authors in their early papers. Using the developed formulation, it is shown first time that when the cylindrical EBG is illuminated by plane wave of particular resonance frequencies, the field are strongly enhanced or shaded inside the cylindrical EBG structure and this effect depends on the angle of incidence of the plane waves. We give a deep physical insight into explanation of this phenomenon based on the Lorentz reciprocity relation for cylindrical structures.

461-480hit(1872hit)