The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LOT(440hit)

221-240hit(440hit)

  • Modification of Cubic Bezier Spirals for Curvature Linearity

    Koichi HARADA  Hidekazu USUI  Koichiro NISHI  

     
    PAPER-Computer Graphics

      Vol:
    E90-D No:1
      Page(s):
    364-370

    We propose the extended Bezier spiral in this paper. The spiral is useful for both design purposes and improved aesthetics. This is because the spiral is one of the Bezier curves, which play an important role in interactive curve design, and because the assessment of the curve is based on the human reception of the curve. For the latter purpose we utilize the logarithmic distribution graph that quantifies the designers' preferences. This paper contributes the unification of the two different curve design objectives (the interactive operation and so called "eye pleasing" result generation); which have been independently investigated so far.

  • Radiation Properties of Multi-Band Equilateral Triangular Microstrip Antennas with Folded Slots

    Ridho CHAYONO  Yuichi KIMURA  Misao HANEISHI  

     
    PAPER-Planar Antennas

      Vol:
    E89-C No:12
      Page(s):
    1896-1903

    This paper presents novel multi-band equilateral triangular microstrip antennas (ET-MSAs) fed by an L-shaped feeding probe. Two types of the ET-MSA are proposed in this paper; they are ET-MSA with closed folded slots and open folded slots with an embedded bridge. The antenna prototypes presented in this paper assume four folded slots in which a metal strip is inserted to realize a good multi-band performance. In addition, the open folded slots, in which the metal strip inside the folded slot is connected to the ET-MSA by the embedded metal bridge, leads to miniaturize the antenna. The proposed antennas are printed on the top layer of a PTFE substrate while the L-probe is printed on the bottom one. The L-shaped probe is utilized due to its tremendous performance in providing a wideband impedance matching. Five resonant frequencies of the ET-MSAs with closed folded slots and with open folded slots are predicted by the electromagnetic simulator (IE3D) based on the method of moment, respectively. Some parametric studies have been also investigated to meet an appropriate multi-band performance. A broadside radiation pattern and gain of 3.0-7.0 dBi have been confirmed by the measurement for the entire observed frequencies. Measured results agree well with the prediction. Thus, these antenna systems are demonstrated to be useful models for a multi-band planar antenna.

  • An Efficient Anti-Collision Method for Tag Identification in a RFID System

    Wen-Tzu CHEN  Guan-Hung LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3386-3392

    Radio frequency identification (RFID) technology is becoming increasingly attractive because of its high storage capacity and reprogrammability. There is a challenge to be overcome when a reader needs to read a number of tags within the reader's interrogation zone at the same time. In this paper, we present an anti-collision scheme in a RFID system. The scheme is based on the dynamic framed ALOHA protocol developed for radio networks. In our scheme, we propose two methods to estimate the number of tags. Simulation results indicate that the total number of time slots for reading all tags is about 4 times the number of tags that need to be read, including acknowledgement time slots. The main advantages of our scheme are the great performance of uplink throughput and its easy implementation for both readers and tags.

  • GI-Based Estimation of Integer Carrier Offset for Multicarrier Transmission Systems

    Eu-Suk SHIM  Hyoung-Kyu SONG  Young-Hwan YOU  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:12
      Page(s):
    3430-3432

    In this letter, we focus on non-pilot-symbol assisted integer frequency offset estimation for multicarrier orthogonal frequency division multiplexing (OFDM) systems. We introduce a frequency offset estimator that is based on the guard interval (GI) present in OFDM signals. We show by simulation that the frequency offset estimator can accurately estimate the frequency misalignment at the sacrifice of limited estimation range.

  • Evaluation of Asymmetric TDD Systems Employing AMC and HARQ by Considering MCS Selection Errors

    Nandar LYNN  Osamu TAKYU  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3138-3147

    In this paper, we evaluate the performance of asymmetric Time Division Duplex (TDD) system that employs Adaptive Modulation and Coding (AMC) and Hybrid ARQ, with consideration of the effect of control delays in TDD. Channel reciprocity characteristic in TDD allows utilization of open loop channel estimation to choose appropriate modulation and coding scheme (MCS) level for AMC. However, control delay in AMC and HARQ depends on TDD time slot allocation formats. Large control delay in AMC will result in false MCS selection due to the poor channel correlation between measured channel state from the received signals and instantaneous channel state of actual transmission with the MCS selected based on the measured channel state. We present an analytical approach to calculate the probability of MCS level selection error in different channel conditions for different asymmetric time slot allocations. From the theoretical and simulation results, it is shown that the instantaneous throughput per slot depends not only on maximum Doppler frequency but also on asymmetric slot allocations. Average delay time that yields error free packet reception in the downlink increases as the number of continuous downlink slots increases.

  • Two-Stage Random-Access Using Two-Hop Relay for Multi-Hop Systems

    Yoichiro MIZUNO  Ryo HASEGAWA  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Spread Spectrum

      Vol:
    E89-A No:10
      Page(s):
    2630-2639

    Higher transmission rates are one of the main characteristics of the fourth-generation (4G*) of mobile communications. These systems are expected to operate at higher frequency bands, which experience larger propagation loss. This results in larger required transmission power, which causes several problems, particularly for uplink communications, as the typical mobile station (MS) has limited transmission power. Multi-hop systems have been proposed to address this problem. In this paper, we consider the issue of random-access (RA) in a multi-hop system. It is clear that a two-hop mobile communication system requires a two-stage RA process. In this paper, we propose a two-stage RA process that is an extension of the RA process of the CDMA-based 3GPP standard. The proposed method uses a hybrid of code division multiple access (CDMA) and Slotted-ALOHA. To realize the proposed two-hop RA, we dedicate one slot for second-hop transmissions in each interval (predefined); we refer to this as the interval slots allocation (ISsA) technique. Numerical analyses and simulations are conducted to evaluate its basic performance in a multi-hop system. The results demonstrate the superior throughput-delay performance of the proposed two-stage RA multi-hop system with ISsA.

  • Frequency-Hopping Pilot Patterns for OFDM Cellular Systems

    Branislav M. POPOVIC  Yang LI  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2322-2328

    A general method for generating multiple two-dimensional frequency-hopping pilot signals with limited mutual interference, for propagation channel estimation in time and frequency with equidistant sampling, is presented. Each pilot signal uses a different generic frequency-hopping pilot pattern that is repeated in frequency domain, with repetition period equal to the desired sampling interval in frequency domain. Some interesting special cases of the general construction are considered as well. The practical applicability and usefulness of the proposed solution are demonstrated by the numerical evaluation of a set of frequency-hopping pilot patterns in a typical multi-cell scenario of the future evolved third generation cellular systems.

  • Capacity Bound of MIMO Systems with MPSK Modulation and Time-Multiplexed Pilots

    Yifei ZHAO  Ming ZHAO  Yunzhou LI  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2629-2632

    In this letter, we elucidate the ergodic capacity of multiple-input multiple-output (MIMO) systems with M-ary phase-shift keying (MPSK) modulation and time-multiplexed pilots in frequency-flat Rayleigh fading environment. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For mathematical tractability, we derive an easy-computing closed-form lower bound of the channel capacity. Based on the lower bound, the optimal power allocation between the data and pilots is also presented in closed-form, and the optimal training length is investigated by numerical optimization. It is shown that the transmit scheme with equal training and data power and optimized training length provides suboptimal performance, and the transmit scheme with optimized training length and training power is optimal. With the latter scheme, in most situations, the optimal training length equals the number of the transmit antennas and the corresponding optimal power allocation can be easily computed with the proposed formula.

  • Spectroscopic Temperature Measurement of Breaking Arcs Near Cathode and Anode Surfaces of Copper Contacts

    Naoki MORIYAMA  Junya SEKIKAWA  Takayoshi KUBONO  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E89-C No:8
      Page(s):
    1141-1146

    Breaking arcs are generated between a pair of Cu electrical contacts in a DC 42 V/10.5 A circuit, and the arc voltage, the arc current and the time-resolved arc spectral intensities near contact surfaces are simultaneously measured. The arc temperature is calculated from some spectral intensities emitted from Cu neutral atoms using the Boltzmann plot method. The arc temperatures near the cathode and anode surfaces are measured, and the following experimental results were obtained. (1) Time evolutions of the spectral intensities and the calculated arc temperature have similar characteristics. (2) The arc temperature near the anode surface is higher than that near the cathode surface, and the temperature fluctuation near the anode surface is larger than that near the cathode. (3) Just before arc extinction, the arc temperature near the cathode surface is almost constant for many breaking operations but the arc temperature near the anode surface varies.

  • Experiment and Theoretical Analysis of Voltage-Controlled Sub-THz Oscillation of Resonant Tunneling Diodes

    Masahiro ASADA  Naoyuki ORIHASHI  Safumi SUZUKI  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    965-971

    Experimental result and theoretical analysis are reported for bias-voltage dependence of oscillation frequency in resonant tunneling diodes (RTDs) integrated with slot antennas. Frequency change of 18 GHz is obtained experimentally for a device with the central oscillation frequency of 470 GHz. The observed frequency change is attributed to the bias-voltage dependence of the transit time of electrons across the RTD layers, which results in a voltage-dependent capacitance added to RTD. Theoretical analysis taking into account this transit time is in reasonable agreement with the observed results. Voltage-controlled RTD oscillators in the terahertz range are expected from the theoretical results. A structure suitable for large frequency change is also discussed briefly.

  • A Single-Layer Hollow-Waveguide 8-Way Butler Matrix

    Shin-ichi YAMAMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:7
      Page(s):
    1080-1088

    The authors propose a single-layer hollow-waveguide 8-way Butler matrix. All components of the Butler matrix are in a single layer which contributes to low-cost fabrication. To reduce the length of the couplers, a step structure is installed in the coupled region. 50% length reduction is obtained in comparison with the conventional design using reflection-suppressing posts in the coupled region. The total size of the matrix is 17.1λg6.0λg. The full structure of the matrix is fabricated by hollow waveguides at 22 GHz band and the total measured loss is only 0.25 dB.

  • Estimation of OFDM Integer Frequency Offset over Rapidly Time-Varying Channels

    Young-Hwan YOU  Sung-Jin KANG  Dae-Ki HONG  Jang-Yeon LEE  Jin-Woong CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2099-2101

    In this letter, we present a simple way of estimating the integer frequency offset of orthogonal frequency division multiplexing (OFDM) system over a rapidly time-varying channel. By utilizing the channel responses of neighboring subcarriers within one pilot symbol, the frequency offset estimator is derived. We show by simulation that the proposed estimator can accurately estimate the integer frequency offset with reduced computational burden.

  • Design of 1 m2 Order Plasma Excitation Single-Layer Slotted Waveguide Array with Conducting Baffles and Quartz Glass Strips Using the GSM-MoM Analysis

    Takuichi HIRANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Tetsuya IDE  Atsushi SASAKI  Kazufumi AZUMA  Yukihiko NAKATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1627-1635

    The authors have proposed a 1 m2 single-layer slotted waveguide array consisting of conducting baffles and quartz glass strips positioned in front of the slot aperture, which is referred to as a vacuum window, for microwave plasma excitation. The effect of the complicated outer vacuum window hinders the realization of uniform distribution. In this paper, a unit-cell of the alternating-phase fed single-layer slotted waveguide array with the vacuum window is analyzed by generalized scattering matrix method (GSM)-method of moments (MoM) hybridization analysis, and the array is designed to realize uniform aperture electromagnetic field distribution, where the plasma and the chamber is neglected. The GSM-MoM analysis gives reliable numerical results while the MoM has numerical errors due to singularities of Green's function for a long cavity. Uniform aperture EM field distribution outside of the vacuum window is observed in near field measurements using a 1/5 scale model antenna, and the validity of the analysis and design is verified.

  • Ultrathin HfOxNy Gate Insulator Formation by Electron Cyclotron Resonance Ar/N2 Plasma Nitridation of HfO2 Thin Films

    Shun-ichiro OHMI  Tomoki KUROSE  Masaki SATOH  

     
    PAPER-Si Devices and Processes

      Vol:
    E89-C No:5
      Page(s):
    596-601

    HfOxNy thin films formed by the electron cyclotron resonance (ECR) Ar/N2 plasma nitridation of HfO2 films were investigated for high-k gate insulator applications. HfOxNy thin films formed by the ECR Ar/N2 plasma nitridation (60 s) of 1.5-nm-thick HfO2 films, which were deposited on chemically oxidized Si(100) substrates, were found to be effective for suppressing interfacial layer growth or crystallization during postdeposition annealing (PDA) in N2 ambient. After 900 PDA of for 5 min in N2 ambient, it was found that HfSiON film with a relatively high dielectric constant was formed on the HfOxNy/Si interface by Si diffusion. An equivalent oxide thickness (EOT) of 2.0 nm and a leakage current density of 1.010-3 A/cm2 (at VFB-1 V) were obtained. The effective mobility of the fabricated p-channel metal-insulator-semiconductor field-effect transistor (MISFET) with the HfOxNy gate insulator was 50 cm2/Vs, and the gate leakage current of the MISFET with the HfOxNy gate insulator was found to be well suppressed compared with the MISFET with the HfO2 gate insulator after 900 PDA because of the nitridation of HfO2.

  • Pilot-Aided ICI Self-Cancellation Scheme for OFDM Systems

    Chih-Peng LI  Wei-Wen HU  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:3
      Page(s):
    955-958

    In this letter, a novel pilot-aided inter-carrier interference (ICI) self-cancellation scheme is proposed for use in orthogonal frequency division multiplexing (OFDM) systems. The proposed scheme maps both modulated data symbols and pre-defined pilot symbols onto non-neighboring sub-carriers with weighting coefficients of +1 and -1. With the aid of pilot symbols, a more accurate estimation of frequency offsets can be obtained, and the ICI self-cancellation demodulation can be operated properly.

  • Speech Analysis Based on Modeling the Effective Voice Source

    M. Shahidur RAHMAN  Tetsuya SHIMAMURA  

     
    PAPER-Speech Analysis

      Vol:
    E89-D No:3
      Page(s):
    1107-1115

    A new system identification based method has been proposed for accurate estimation of vocal tract parameters. An often encountered problem in using the conventional linear prediction analysis is due to the harmonic structure of the excitation source of voiced speech. This harmonic characteristic is coupled with the estimation of autoregressive (AR) coefficients that results in difficulties in estimating the vocal tract filter. This paper models the effective voice source from the residual obtained through the covariance analysis in the first-pass which is then used as input to the second-pass least-square analysis. A better source-filter separation is thus achieved. The formant frequencies and corresponding bandwidths obtained using the proposed method for synthetic vowels are found to be accurate up to a factor of more than three (in percent) compared to the conventional method. Since the source characteristic is taken into account, local variations due to the positioning of analysis window are reduced significantly. The validity of the proposed method is also examined by inspecting the spectra obtained from natural vowel sounds uttered by high-pitched female speaker.

  • Channel Estimation with Selective Superimposed Pilot Sequences under Fast Fading Environments

    Fumiaki TSUZUKI  Tomoaki OHTSUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    556-563

    Recently, superimposed pilot channel estimation has been proposed for wireless communications, where the pilot symbol sequence is superimposed on a data symbol sequence and transmitted together, and thus there is no drop in information rate. In this scheme, the receiver correlates the received signal sequence with the pilot symbol sequence, and obtains the channel estimate. However, the correlation between the pilot symbol sequence and the data symbol sequence deteriorates the channel estimation accuracy. The use of the longer frame leads to the lower correlation, but also to the lower channel tracking capability. In this paper, we propose a selective superimposed pilot channel estimation scheme with selecting a pilot sequence that has a low correlation with a data symbol sequence from the set of the pilot sequences assigned to the transmitter. Note that the superimposed channel estimation scheme with one pilot sequence assigned to the transmitter is the conventional superimposed channel estimation scheme. We show that the proposed channel estimation scheme is superior to the conventional superimposed channel estimation scheme (pilot sequence = 1). We also show that the proposed channel estimation scheme can achieve the good channel estimate even under fast fading environments. Moreover, we show that the proposed channel estimation scheme is superior to the pilot assisted channel estimation scheme, although pilot symbol power is a deterioration factor in the proposed channel estimation scheme.

  • Pilot Patterns for OFDM Communication Systems in a Fast Time-Varying Channel

    Yeon Ju LIM  Deok Soo HYUN  Sang Kyu PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    243-246

    In this letter, we focus on rearranged pilot patterns for channel estimation in a mobile communication system using Orthogonal Frequency Division Multiplexing (OFDM). The conventional pilot patterns for channel estimation in OFDM systems do not have robust characteristics in time-varying channels. In order to overcome this weakness of the conventional pilot patterns, we propose the pilot patterns with robust mobility for OFDM systems, which can achieve a good error performance in time-varying multi-path fading channels. Simulation results show that the bit error rate (BER) performances of the proposed pilot patterns are better than those of the conventional pilot patterns in fast time-varying fading channels under the same pilot density and data rate.

  • A Synchronization and Cell Searching Technique Using Pilot Tones for OFDM Cellular Systems

    Dong Han KIM  Kwang Soon KIM  Jae Young AHN  Yong Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    235-238

    In this letter, a pilot structure and an efficient algorithm for downlink synchronization and cell searching in OFDM-based cellular systems are proposed. The pilots, randomly allocated in the frequency domain, allow us to minimize inter-cell interference (ICI) as well as to increase cell searching capability, estimation range of integer carrier frequency offset (CFO), and estimation accuracy of symbol timing offset (STO). The proposed low-complexity joint algorithm for integer CFO estimation, cell searching, and downlink detection is robust to ICI, multipath channel, STO and fine CFO.

  • A Waveguide Broad-Wall Transverse Slot Linear Array with Reflection-Canceling Inductive Posts and Grating-Lobe Suppressing Parasitic Dipoles

    M.G. SORWAR HOSSAIN  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna Design

      Vol:
    E88-C No:12
      Page(s):
    2266-2273

    A design of a linearly-polarized non-resonant waveguide broad-wall transverse slot linear array with suppressed grating lobes is presented. Each unit element in the array consists of a transverse slot, an inductive post and a parasitic dipole-pair at a height of half of the free space wavelength. It is designed as an isolated unit without considering mutual coupling by using the Method of Moments (MoM) for radiation suppression in grating beam direction and reflection cancellation at the input. The elements thus designed are used in a travelling wave array environment. It is predicted that the reflection is less than -20 dB at 11.95 GHz while the grating lobes are suppressed by more than 15 dB. The design and the characteristics of the array are confirmed by measurements.

221-240hit(440hit)