1-16hit |
Shotaro YASUMORI Seiya MORIKAWA Takanori SATO Tadashi KAWAI Akira ENOKIHARA Shinya NAKAJIMA Kouichi AKAHANE
An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.
Shimpei SHIMIZU Takayuki KOBAYASHI Takeshi UMEKI Takushi KAZAMA Koji ENBUTSU Ryoichi KASAHARA Yutaka MIYAMOTO
Optical phase conjugation (OPC) is an all-optical signal processing technique for mitigating fiber nonlinearity and is promising for building cost-efficient fiber networks with few optic-electric-optic conversions and long amplification spacing. In lumped amplified systems, OPC has a little nonlinearity mitigation efficiency for nonlinear distortion induced by cross-phase modulation (XPM) due to the asymmetry of power and chromatic dispersion (CD) maps during propagation in transmission fiber. In addition, the walk-off of XPM-induced noise becomes small due to the CD compensation effect of OPC, so the deterministic nonlinear distortion increases. Therefore, lumped amplified transmission systems with OPC are more sensitive to channel spacing than conventional systems. In this paper, we show the channel spacing dependence of NZ-DSF transmission using amplification repeater with OPC. Numerical simulations show comprehensive characteristics between channel spacing and CD in a 100-Gbps/λ WDM signal. An experimental verification using periodically poled LiNbO3-based OPC is also performed. These results suggest that channel spacing design is more important in OPC-assisted systems than in conventional dispersion-unmanaged systems.
Takushi KAZAMA Takeshi UMEKI Yasuhiro OKAMURA Koji ENBUTSU Osamu TADANAGA Atsushi TAKADA Ryoichi KASAHARA
We evaluated the noise properties of a periodically poled lithium niobite phase-sensitive amplifier (PSA) using a phase-locked local oscillator as a pump generated by an optical phase-locked loop (OPLL-LO). To examine whether or not the LO pump generated by an OPLL degrades the noise figure (NF) of the PSA, we compared the noise levels of a PSA using an OPLL-LO with that of one using a master local oscillator (M-LO) that utilizes the master light itself as a pump in the electrical domain. With the OPLL, the phase-locked local light had almost the same frequency noise components as the master light. We observed almost the same output noise spectra for the OPLL-LO PSA and M-LO PSA and confirmed the absence of excess noise components in the OPLL-LO PSA in the 0.1 to 20-GHz range. The OPLL-LO PSA exhibited low-noise amplification with an average NF of 1.7-dB at a 23.2-dB gain within an input power range of -31 to -21dBm, which is a feasible input power for repeater amplifiers used in the optical signal transmission systems. We also investigated the influence of the noisy master light, which emulates the accumulation of optical noise from the amplifiers in the transmission system. The OPLL-LO PSA was highly tolerant to the optical noise because the difference in the NF was negligibly small within a master light OSNR range of 5 to 55dB. These results indicate that the OPLL-LO PSA will be useful as a low-noise repeater amplifier for the spectrally efficient large-capacity photonic networks of the future.
Takeshi UMEKI Takayuki KOBAYASHI Akihide SANO Takuya IKUTA Masashi ABE Takushi KAZAMA Koji ENBUTSU Ryoichi KASAHARA Yutaka MIYAMOTO
We developed a polarization-independent and reserved-band-less complementary spectral inverted optical phase conjugation (CSI-OPC) device using dual-band difference frequency generation based on highly efficient periodically poled LiNbO3 waveguide technologies. To examine the nonlinearity mitigation in a long-haul transmission using a large number of OPCs, we installed a CSI-OPC device in the middle of a pure silica core fiber-based recirculating loop transmission line with a length of 320km. First, we examined the fiber-input power tolerance after 5,120-km and 6,400-km transmission using 22.5-Gbaud PDM-16QAM 10-channel DWDM signals and found a Q-factor improvement of over 1.3dB along with enhanced power tolerance thanks to mitigating the fiber nonlinearity. We then demonstrated transmission distance extension using the CSI-OPC device. The use of multiple CSI-OPCs enables an obvious performance improvements attained by extending the transmission distance from 6,400km to 8,960km, which corresponds to applying the CSI-OPC device 28 times. Moreover, there was no Q-factor degradation for the link in a linear regime after applying the CSI-OPC device more than 16 times. These results demonstrate that the CSI-OPC device can improve the nonlinear tolerance of PDM-16QAM signals without an excess penalty.
Koji ENBUTSU Takeshi UMEKI Osamu TADANAGA Masaki ASOBE Hirokazu TAKENOUCHI
We propose a highly sensitive carrier-recovery system for in-line amplification for binary phase shift keying (BPSK) signals in a periodically poled LiNbO3 based phase sensitive amplifier (PSA). We applied a discrete two-stage second harmonic generation/difference frequency generation (SHG/DFG) parametric conversion scheme to enhance the sensitivity of the carrier recovery. Owing to this two-stage SHG/DFG scheme, the conversion efficiency of the seed light for the injection locking needed for the pump generation can be improved compared to that of the cascaded SHG/DFG scheme. The new discrete scheme might also prevent the SNR degradation of the seed light caused by the ASE from the booster EDFA compared with the previous system that used the cascaded scheme. This novel carrier-recovery system exhibits high sensitivity with the SNR of over 7.8dB of the seed light, while tapped signal power is as low as -50dBm, which is low enough for injection locking. The new in-line PSA with this carrier-recovery system exhibits high gain of over 11dB. Since we successfully obtained the high gain property, we tried multistage amplification taking into account practical use and achieved it with both a high gain of 20dB and a noise figure that is almost as low as the standard quantum limit of a PSA.
Yusuf Nur WIJAYANTO Atsushi KANNO Hiroshi MURATA Tetsuya KAWANISHI Yasuyuki OKAMURA
A millimeter-wave radar receiver using a z-cut LiNbO3 optical modulator with orthogonal-gap-embedded patch-antennas on a low-k dielectric material is proposed. A millimeter-wave from a reflected radar signal can be received by the patch-antennas and converted directly to a lightwave through electro-optic modulation. A low-k dielectric material is used as a substrate for improving antenna gain. Additionally, an interaction length between millimeter-wave and lightwave electric fields becomes long. As a result, large modulation efficiency can be obtained, which is proportional to sensitivity of the millimeter-wave radar receiver. Optical millimeter-wave radar beam-forming can be obtained using the proposed device with meandering-gaps for controlling interaction between millimeter-wave and lightwave electric fields in electro-optic modulation. Analysis and experimentally demonstration of the proposed device are discussed and reported for 40GHz millimeter-wave bands. Optical millimeter-wave radar beam-forming in 2-D is also discussed.
Atsushi KANNO Takahide SAKAMOTO Akito CHIBA Masaaki SUDO Kaoru HIGUMA Junichiro ICHIKAWA Tetsuya KAWANISHI
We demonstrate high baud-rate DQPSK modulation with full-ETDM technique using a novel high-speed optical IQ modulator consisting of a ridge-type optical waveguide structure on a thin LiNbO3 substrate. Our fabrication technique achieves a drastic extension of the modulator's bandwidth and a reduction of half-wave voltage. Demonstration of 90-Gbaud NRZ-DP-DQPSK signal generation with the modulator successfully achieved a bit rate of 360-Gb/s under full-ETDM configuration.
Kiyoshi KISHIOKA Tomonari KISHIMOTO Kenta KUME
This paper describes improvement of the gain in the Er-doped lithium niobate waveguide optical amplifiers. A new configuration is proposed, which is loaded with a high-index cladding for the purpose of realizing a larger overlap between the guided light fields and doped Er ion-concentration. It is shown by theoretical simulations and also by experiments that the clad is advantageous to shifts of the light fields toward the substrate surface, and that the overlap between the light field and Er ion-concentration becomes large. Improved optical gains are measured for a fabricated device with a thin-TiO2 clad in the LiNbO3 substrate.
Weiwei HU Keizo INAGAKI Takashi OHIRA
In this paper, we report on our recent work in designing and developing an optical waveguide and optical integrated circuit for optical BFN in adaptive multibeam array antenna. We introduce a new integrated Ti:LiNbO3 waveguide and prove that it is able to yield large birefringence and birefringence dispersion. We present a new technique using a microwave-modulated optical wave to measure the birefringence in integrated Ti:LiNbO3 optical waveguides. The measuring results show that the new waveguide has a birefringence of 0.08 and birefringence dispersion of 0.05 µm-1 at optical wavelength of 1.55 µm. When the new Ti:LiNbO3 is applied to form a integrated optical waveguide array in optical beamforming network, it is shown that microwave phase shifts within the range of [-180, +180] is achieved by tuning the optical wavelength 10 nm around 1.55 µm.
Chang-Qing XU Ken FUJITA Andrew R. PRATT Yoh OGAWA Takeshi KAMIJOH
1.5 µm-band LiNbO3 quasiphase matched (QPM) wavelength converters consisting of a periodical domain inverted structure and a proton exchanged waveguide, have been studied in detail both theoretically and experimentally. Optimum device fabrication conditions are investigated with respected to waveguide propagation loss, coupling loss to a single-mode fiber and wavelength conversion efficiency. A normalized conversion efficiency as high as 200 %/W (by a SHG measurement) and a fiber-to-fiber insertion loss of less than 3.5 dB (@1.55 µm) is obtained for a wavelength converter module with a device length of 40 mm. It is shown that a highly uniform periodical domain inverted structure and a uniform proton exchange waveguide are key to obtaining efficient wavelength conversion. The tolerance of the waveguide width fluctuation is found to be very critical and is less than 20 nm for a 40 mm-long device. Future optimization of LiNbO3 QPM wavelength converters and the possible device applications in future optical communication systems are also presented.
Masahiro GESHIRO Toshiaki KITAMURA Tadashi YOSHIKAWA Shinnosuke SAWA
A two-waveguide tapered velocity coupler is presented for a variable divider of optical beams. The coupler consists of one tapered slab waveguide in dimension and the other slab waveguide with a constant film thickness. It is assumed that the device is fabricated on a LiNbO3 substrate, with a push/pull external electric field parallel with the optic axis applied only in the film regions of the coupler. Various numerical simulations through the finite difference beam propagation analysis show that a wide range of dividing ratios from - 15 dB to 15 dB or more can be achieved with considerably small values of driving-voltage electrode-length product and that the dividing characteristics are stable over a wide range of frequencies.
Kazuto NOGUCHI Osamu MITOMI Hiroshi MIYAZAWA
We describe the design, fabrication, and characteristics of a push-pull type ridged Ti:LiNbO3 optical modulator with two electrodes. The structure keeps microwave propagation loss low and enables a large interaction between microwaves and optical waves under the condition of velocity and impedance matching, resulting in a large modulation bandwidth and low driving voltage. Using this structure, we have developed an optical intensity modulator with an optical 3-dB bandwidth of 45 GHz (an electrical 3-dB bandwidth of 30 GHz) and a half-wave voltage of 3.9 V in single-electdoe operation (a half-wave voltage of 1.95 V in push-pull operation)at a wavelength of 1.55µm.
Keiji YOSHIDA Akihiko NOMURA Yutaka KANDA
Microwave characteristics of a LiNbO3 optical modulator using a superconductor (Pb-In-Au) as a resonant electrode has been studied experimentally at low temperatures down to 4.2 K. It is shown that at the resonance frequency of 14.8 GHz the obtained modulation depth takes a maximum value as expected from theory when the electrode becomes superconducting. The present results demonstrate the possible applications of superconducting electrodes to high performance LiNbO3 optical modulators.
Keiji YOSHIDA Noriaki HORIGUCHI Yutaka KANDA
Microwave characteristics of a LiNbO3 optical modulator employing superconductor electrodes (Pb-In-Au) as a transmission line of a traveling signal has been studied experimentally in the temperature range from 300 K to 4.2 K. At frequencies between 8 GHz and 12 GHz it is shown that the obtained modulation efficiency increases as expected from theory when the superconductor undergoes the transition from a normal state to a superconducting state. The present results dumonstrate the possible applications of superconducting electrodes to high performance LiNbO3 optical modulators.
Tsukasa YONEYAMA Tohru IWASAKI
The inverted slot line (ISL) has been propoaed for millimeter-wave LiNbO3 optical modulator. It is simple in structure, and capable of achieving the perfect velocity matching between carrier and modulating waves. The excellent performance of the ISL optical modulator has been demonstrated at 100 GHz, and the extension into the 50 GHz range is being expected. This paper addresses the analysis of the ISL based on the spectral domain approach. The major results obtained here are the demonstration of the perfect velocity matching not only at 10 GHz but also at 50 GHz, and the characterization of the ISL in terms of effective refractive index, characteristic impedance, overlap integral factor and transmission loss. The depth of optical phase modulation is also estimated at 50 GHz to show a promising performance in the millimeter-wave frequency range. The effective refractive index and the characteristic impedance are found to be theoretically predictable, but the field profile, the overlap integral factor and the transmission loss are not necessarily in good agreement with measurements. As a result of analysis, it can be concluded that the Y-cut substrate is superior to the Z-cut substrate in the following respects: 1. Coupling with the surface wave mode hardly occurs near the operating frequency range. 2. The perfect velocity matching can be attained with a larger spacing between the electrode and the ground plane. 3. The transmission loss is smaller. 4. The field intensity and the voerlap integral factor do not seem to be much deteriorated in the actual ISL.
Keiji YOSHIDA Katsuhiko IKEDA Yutaka KANDA
Low temperature experiments have been made to demonstrate the operation of LiNbO3 optical modulator with superconducting electrodes. The operation of the modulator for applied dc signals as well as microwave signals in the frequency range between 8 GHz and 12 GHz has been observed at temparatures as low as 4.2 K. The present results indicate a possibility of realizing high performance LiNbO3 optical modulators employing superconducting electrodes.