The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

7521-7540hit(8249hit)

  • A Simultaneous Technology Mapping, Placement, and Global Routing Algorithm for FPGAs with Path Delay Constraints

    Nozomu TOGAWA  Masao SATO  Tatsuo OHTSUKI  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    321-329

    In this paper, we propose a new FPGA design algorithm, Maple-opt, in which technology mapping, placement, and global routing are executed so that the delay of each critical signal path in an input circuit is within a specified upper bound imposed on it. The basic algorithm of Maple-opt is top-down hi-erarchical bi-partitioning of regions. Technology mapping onto logic-blocks of FPGAs, their placement, and global routing are determined simulatenously in each hierarchical process. This simultaneity leads to less congested layout for routing. In addition to that, Maple-opt computes a lower bound of delay for each path with a constraint value and determines critical paths based on the difference between the lower bound and the constraint value dynamically in each hierarchical process. Two delay reduction processes are executed for the critical paths; one is routing delay reduction and the other is logic-block delay reduction. Routing delay reduction is realized such that, when bi-partitioning a region, each constrained path is assigned to one subregion. Logic-block delay reduction is realized such that each constrained path is mapped onto fewer logic-blocks. Experimental results for some benchmark circuits show its efficiency and effectiveness.

  • Sizes and Numbers of Particles Being Capable of Causing Pattern Defects in Semiconductor Device Manufacturing

    Mototaka KAMOSHIDA  Hirotomo INUI  Toshiyuki OHTA  Kunihiko KASAMA  

     
    INVITED PAPER

      Vol:
    E79-C No:3
      Page(s):
    264-271

    The scaling laws between the design rules and the smallest sizes and numbers of particles capable of causing pattern defects and scrapping dies in semiconductor device manufacturing are described. Simulation with electromagnetic waveguide model indicates the possibility that particles, the sizes of which are of comparable order or even smaller than the wavelength of the lithography irradiation sources, are capable of causing pattern defects. For example, in the future 0.25 µm-design-rule era, the critical sizes of Si, Al, and SiO2 particles are simulated as 120 nm 120 nm, 120 nm 120 nm, and 560 nm 560 nm, respectively, in the case of 0.7 µm-thick chemically-amplified positive photoresist with 47 nm-thick top anti-reflective coating films. Future giga-scale integration era is also predicted.

  • Spatially and Temporally Joint Transmitter-Receiver Using an Adaptive Array Antenna

    Naoto ISHII  Ryuji KOHNO  

     
    PAPER-Modulation, Demodulation

      Vol:
    E79-B No:3
      Page(s):
    361-367

    Several papers have been shown equalization in the reception side. However, equalization in transmission side that is partial response signaling (PRS) or precoding is also possible in a two-way interactive communication such as time or frequency division duplex (TDD of FDD). This paper proposes and investigates a system which includes a transmission equalization and reception equalization based on an array antenna. This system is the extension in spatial and temporal domains. The channel capacity can be improved in the super channel which includes the transmitter and receiver array antenna.

  • High-Speed Adaptive Noise Canceller with Parallel Block Structure

    Kiyoyasu MARUYAMA  Chawalit BENJANGKAPRASERT  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    275-282

    An adaptive algorithm for a single sinusoid detection using IIR bandpass filter with parallel block structure has been proposed by Nishimura et al. However, the algorithm has three problems: First, it has several input frequencies being impossible to converge. Secondly, the convergence rate can not be higher than that of the scalar structure. Finally, it has a large amount of computation. In this paper, a new algorithm is proposed to solve these problems. In addition, a new structure is proposed to reduce the amount of computation, in which the adaptive control signal generator is realized by the paralel block structure. Simulation results are given to illustrate the performance of the proposed algorithm.

  • Distributed Dynamic Channel Allocation for the Evolution of TDMA Cellular Systems

    Kojiro HAMABE  Yukitsuna FURUYA  

     
    INVITED PAPER

      Vol:
    E79-B No:3
      Page(s):
    230-236

    This paper reviews Dynamic Channel Allocation (DCA) in TDMA cellular systems. The emphasis is on distributed DCA, which features decentralized control and adaptability to interference. Performance measures are discussed not only from a theoretical viewpoint but also from a practical viewpoint. Major techniques to enhance the capacity of cellular systems are channel segregation, reuse-partitioning, and transmitter power control. In addition to the performance of conventional cellular systems, differing performance in microcellular systems and multi-layer cellular systems is also discussed.

  • Simplified Distribution Base Resistance Model in Self-Aligned Bipolar Transistors

    Masamichi TANABE  Hiromi SHIMAMOTO  Takahiro ONAI  Katsuyoshi WASHIO  

     
    PAPER-Device and Circuit Characterization

      Vol:
    E79-C No:2
      Page(s):
    165-171

    A simplified distribution base resistance model (SDM) is proposed to identify each component of the base resistance and determine the dominant. This model divides the parasitic base resistance into one straight path and two surrounding paths. It is clarified that the link base resistance is dominant in a short emitter and the surrounding polysilicon base electrode resistance is dominant in a long emitter. In the SDM, the distance of the link base is reduced to half; with metal silicide as the extrinsic base electrode, the base resistance will be reduced to 75%.

  • Self-Routing in 2-D Shuffle Networks

    Josef GIGLMAYR  

     
    PAPER-Switching and Communication Processing

      Vol:
    E79-B No:2
      Page(s):
    173-181

    Throughout the paper, the proper operating of the self-routing principle in 2-D shuffle multistage interconnection networks (MINs) is analysed. (The notation 1-D MIN and 2-D MIN is applied for a MIN which interconnects 1-D and 2-D data, respectively.) Two different methods for self-routing in 2-D shuffle MINs are presented: (1) The application of self-routing in 1-D MINs by a switch-pattern preserving transformation of 1-D shuffle stages into 2-D shuffle stages (and vice versa) and (2) the general concept of self-routing in 2-D shuffle MINs based on self-routing with regard to each coordinate which is the original contribution of the paper. Several examples are provided which make the various problems transparent.

  • Coding Gain in Non-Paraunitary Subband Coding Systems

    S. A. Asghar BEHESHTI SHIRAZI  Yoshitaka MORIKAWA  Hiroshi HAMADA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E79-A No:2
      Page(s):
    233-241

    This work addresses the problems of bit allocation and coding gain in subband coding system with non-paraunitary filter banks. Since energy conservation does not hold in non-paraunitary filter banks, the model to be adopted for quantizers is important to evaluate the output distortion introduced by subband signal quantization. To evaluate the overall distortion we start with adopting the gain plus additive noise model for quantizers, which is more reliable than the additive noise model. With this model, the expression for overall reconstruction error variance becomes so complicated that the problem of optimum bit allocation, as required for evaluation of the coding gain, must be numerically solved. So, we propose an approximation method in which we neglect the terms due to correlation among quantization errors in calculating the bit allocation but take them into consideration in evaluating the coding gain, assuming sufficiently high bitrate coding. Application of this approximation method to the SSKF subband coding systems with AR (1) input source shows that the method is very accurate even at low bit rate coding (1 bit/sample).

  • Congestion Control for ABR Service Based on Dynamic UPC/NPC

    Katsumi YAMATO  Hiroshi ESAKI  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:2
      Page(s):
    142-152

    A novel reactive congestion control scheme based on Dynamic UPC/NPC (Usage/Network Parameter Control) in ATM networks is proposed. In this scheme, policing parameters at the UPC/NPC are dynamically modified in response to the reception of RM (Resource Management) cells. In a congested state, traffic volume submitted to the network is regulated by Dynamic UPC/NPC, while providing negotiated QoS (Quality of Service) for each ATM connection. When end-stations (or edge-entities between network segments) operate according to ER-based (Explicit Rate based) behavior, a UPC/NPC function will indicate (send) an ER value toward each source end-station using backward RM cells. In this case, the policing parameter at the UPC/NPC should take the same value as the ER value. When end-stations (or edge-entities) operate according to EFCI-based (Explicit Forward Congestion Indication based) behavior, the modified policing parameter at the UPC/NPC point must be harmonized with the modified cell transmission rate at the source end-stations (or at the edge-entities). In order to improve the control performance for the long distance connections, backward RM cells will be generated by the NPC function (UPC function will be optional) at the egress of a congested network in response to the reception of EFCI marked cells (or forward RM cells) as a proxy destination end-station, and they will be sent back toward the UPC/NPC function at the ingress of the network. As a result, the proposed control scheme enables the network to recover from the congested state securely and provide the negotiated service quality, even if cooperation of (rate-based) flow control at each source end-station (and at edge-entities between network segments) is not expected.

  • Efficient Cell-Loss Ratio Estimation for Real-Time CAC Decisions

    Masaki AIDA  Teruyuki KUBO  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:2
      Page(s):
    108-115

    In ATM networks Connection Admission Control (CAC) is a key part of traffic control but several challenging problems still remain. One is how to assign sufficient bandwidth fast enough to achieve real-time CAC. Although solutions to the bandwidth assignment problem have been proposed, they require a lot of calculations depending on the number of VCs and on the number of different VC types. Therefore, it is difficult to apply these solutions to real-time CAC decisions, This paper presents a cell-loss ratio evaluation algorithm that takes the peak and the average cell rates as inputs, and providers the upper-bound of the cell-loss ratio. The most remarkable characteristic of this algorithm is that it does not require exhaustive calculation and its calculation load is independent of the number of VCs and the number of different VC types. Using this approximation, we propose a real-time CAC. The experimental results show that call processing of the proposed CAC using a processor, whose pertormance is almost the same as that of a processor in a conventional PBX, terminates within several milliseconds.

  • Design of Approximate Inverse Systems Using All-Pass Networks

    Md. Kamrul HASAN  Satoru SHIMIZU  Takashi YAHAGI  

     
    LETTER-Systems and Control

      Vol:
    E79-A No:2
      Page(s):
    248-251

    This letter presents a new design method for approximate inverse systems using all-pass networks. The efficacy of approximate inverse systems for input and parameter estimation of nonminimum phase systems is well recognized. in the previous methods, only time domain design of FIR (finite impulse response) type approximate inverse systems were considered. Here, we demonstrate that IIR (infinite impulse response) type approximate inverse systems outperform the previous methods. A nonlinear optimization technique is adopted for designing the proposed system in the frequency domain. Numerical examples are also presented to show the effectiveness of the proposed method.

  • Design Algorithm for Virtual Path Based ATM Networks

    Byung Han RYU  Hiroyuki OHSAKI  Masayuki MURATA  Hideo MIYAHAEA  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:2
      Page(s):
    97-107

    An ATM network design algorithm is treated as a resource allocation problem. As an effective way to facilitate a coexistence of traffic with its diverse characteristics and different quality of service (QOS) requirements in ATM networks, a virtual path (VP) concept has been proposed. In attempting to design the VP (Virtual Path)-based ATM network, it requires to consider a network topology and traffic pattern generated from users for minimizing a network construction cost while satisfying QOS requirements such as cell / call loss probabilities and cell delay times. In this paper, we propose a new heuristic design algorithm for the VP-based ATM network under QOS constraints. A minimum bandwidth required to transfer a given amount of traffic is first obtained by utilizing an equivalent bandwidth method. After all the routes of VPs are temporarily established by means of the shortest paths, we try to minimize the network cost through the alternation of VP route, the separation of a single VP into several VPs, and the introduction of VCX nodes. To evaluate our design algorithm, we consider two kinds of traffic; voice traffic as low speed service and still picture traffic as high speed service. Through numerical examples, we demonstrate that our design method can achieve an efficient use of network resources, which results in the cost-effective VP-based ATM network.

  • Partially Supervised Learning for Nearest Neighbor Classifiers

    Hiroyuki MATSUNAGA  Kiichi URAHAMA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:2
      Page(s):
    130-135

    A learning algorithm is presented for nearest neighbor pattern classifiers for the cases where mixed supervised and unsupervised training data are given. The classification rule includes rejection of outlier patterns and fuzzy classification. This partially supervised learning problem is formulated as a multiobjective program which reduces to purely super-vised case when all training data are supervised or to the other extreme of fully unsupervised one when all data are unsupervised. The learning, i. e. the solution process of this program is performed with a gradient method for searching a saddle point of the Lagrange function of the program.

  • Improved CELP-Based Coding in a Noisy Environment Using a Trained Sparse Conjugate Codebook

    Akitoshi KATAOKA  Sachiko KURIHARA  Shinji HAYASHI  Takehiro MORIYA  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E79-D No:2
      Page(s):
    123-129

    A trained sparse conjugate codebook is proposed for improving the speech quality of CELP-based coding in a noisy environment. Although CELP coding provides high quality at a low bit rate in a silent environment (creating clean speech), it cannot provide a satisfactory quality in a noisy environment because the conventional fixed codebook is designed to be suitable for clean speech. The proposed codebook consists of two sub-codebooks; each sub-codebook consists of a random component and a trained component. Each component has excitation vectors consisting of a few pulses. In the random component, pulse position and amplitude are determined randomly. Since the radom component does not depend on the speech characteristics, it handles noise better than the trained one. The trained component maintains high quality for clean speech. Since excitation vector is the sum of the two sub-excitation vectors, this codebook handles various speech conditions by selecting a sub-vector from each component. This codebook also reduces the computational complexity of a fixed codebook search and memory requirements compared with the conventional codebook. Subjective testing (absolute category rating (ACR) and degradation category rating (DCR)) indicated that this codebook improves speech quality compared with the conventional trained codebook for noisy speech. The ACR test showed that the quality of the 8 kbit/s CELP coder with this codebook is equivalent to that of the 32 kbit/s ADPCM for clean speech.

  • Quantitative Charge Build-Up Evaluation Technique by Using MOS Capacitors with Charge Collecting Electrodes in Wafer Processing

    Hiroki KUBO  Takashi NAMURA  Kenji YONEDA  Hiroshi OHISHI  Yoshihiro TODOKORO  

     
    PAPER-Reliability Analysis

      Vol:
    E79-C No:2
      Page(s):
    198-205

    A novel technique for evaluation of charge build-up in semiconductor wafer processing such as ion implantation, plasma etching and plasma enhanced chemical vapor deposition by using the breakdown of MOS capacitors with charge collecting electrodes (antenna) is proposed. The charge build-up during high beam current ion implantation is successfully evaluated by using this technique. The breakdown sensitivity of a MOS capacitor is improved by using a small area MOS capacitor with a large area antenna electrode. To estimate charge build-up on wafers quantitatively, the best combination of gate oxide thickness, substrate type, MOS capacitor area and antenna ratio should be carefully chosen for individual charge build-up situation. The optimum structured antenna MOS capacitors which relationship between QBD and stressing current density was well characterized give us very simple and quantitative charge build-up evaluation. This technique is very simple and useful to estimate charge build-up as compared with conventional technique by suing EEPROM devices or large area MOS capacitors.

  • An Optical Fiber Dropping Method for Residential Premises Employing Optical Drop Wire Stranded Cable

    Kazuo HOGARI  Yoshiki NAKATSUJI  Takenori MORIMITSU  

     
    LETTER-Communication Cable and Wave Guides

      Vol:
    E79-B No:2
      Page(s):
    205-208

    This letter describes an efficient and economical method for dropping optical fiber to residential premises in which several fiber ribbons in a distribution cable are assigned to one dropping point. The optical fiber cables for dropping, which contain mono-coated fibers, are then aerially installed between several poles from this point during initial construction. One or two fibers in a cable are then branched and dropped to a subscriber when the demand arises. When an optical drop wire stranded cable is used as the optical fiber cable for dropping, the above method can be employed without the need for a fiber joint in the dropping portion. The tube stranding pitch of this cable is investigated theoretically and experimentally, and the cable is manufactured based on the results. The transmission characteristics of the cable are confirmed to be stable.

  • Capacity of Semi-Orthogonally Associative Memory Neural Network Model

    Xin-Min HUANG  Yasumitsu MIYAZAKI  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E79-D No:1
      Page(s):
    72-81

    Semi-Orthogonally Associative Memory neural network model (SAM) uses the orthogonal vectors in Un = {-1, 1}n as its characteristic patterns. It is necessary to select the optimum characteristic parameter n so as to increase the efficiency of this model used. This paper investigates the dynamic behavior and error correcting capability of SAM by statistical neurodynamics, and demonstrates that there exists a convergence criterion in tis recalling processes. And then, making use of these results, its optimum characteristic parameter is deduced. It is proved that, in the statistical sense, its recalling outputs converge to the desired pattern when the initial similar probability is larger than the convergence criterion and not true otherwise. For a SAM with N neurons, when its characteristic parameter is optimum, its memory capacity is N/2 ln ln N, the information storage capacity per connection weight is larger than 9/23 (bits/weight) and the radius of attractive basin of non-spurious stable state is about 0.25N. Computer simulations are done on this model and the simulation results are consistent with the results of theoretical analyses.

  • Optical-Microwave Mixing Using Planar Transistors

    Tibor BERCELI  

     
    INVITED PAPER-Optomicrowave Devices

      Vol:
    E79-C No:1
      Page(s):
    21-26

    The properties of the optical-microwave mixing process are investigated in detail. To describe these processes a new approach, the parametric method is introduced which provides a better description of the mixing phenomenon. The paper presents new experimental results on and new theoretical analysis methods for the optical-microwave mixing process and also for its dynamic behavior. The dynamic properties are very important in many applications when the light is intensity modulated by a high frequency or high bit rate signal. A remarkable decrease is observed in the mixing product with increasing optical modulation frequency. There are two reasons for it: the time constant exhibited by the depletion region between the substrate and the epitaxial layer and the optically induced substrate current which is increasing with the modulation frequency and doesn't contribute to the mixing effect. Understanding the optical-microwave mixing process provides new solutions for many applications. For example the optical-microwave mixing techniques offers several advantages in case of optical reception. In the detection process the modulation signal can be transposed to an intermediate frequency band (instead of the baseband) making possible a lower noise reception in a wider band. Another important and advantageous application is in the reception of subcarrier modulated optical signals.

  • Implementing OSI Protocol Stack in a Multiprocessor Environment

    Sunwan CHOI  Kilnam CHON  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E79-B No:1
      Page(s):
    28-36

    Parallel processing is a well-known approach to enhance the performance of communication subsystems. The several forms of parallelism embedded in communication protocols have been applied to the OSI protocol stack. However, the OSI protocol stack involves sequential processing due to the layered architecture. Thus, all the layers have been prevented from performing immediate processing as soon as the data arrives. To solve the problem, we apply a Multiple Instruction Single Data (MISD) parallel scheme to OSI processing for the network layer through the presentation layer. In the MISD scheme, different processors can be allocated to different layers and concurrently run the code for each layer. In contrast, the conventional approach adopts for a pipeline scheme that all the layers can be assigned to different pipeline stages and will be performed in a time interval and their dependence. The implementations have been performed to compare the pipeline scheme with the MISD scheme on the Parsytec Super Cluster consisting of 64 Transputers. The measures show that the MISD scheme has performance improvement as high as about 84% in comparison with the pipeline one.

  • SAR Distributions in a Human Model Exposed to Electromagnetic Near Field by a Short Electric Dipole

    So-ichi WATANABE  Masao TAKI  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E79-B No:1
      Page(s):
    77-84

    The SAR distributions over a homogeneous human model exposed to a near field of a short electric dipole in the resonant frequency region were calculated with the spatial resolution of 1cm3 which approximated 1g tissue by using the FDTD method with the expansion technique. The dependences of the SAR distribution on the distance between the model and the source and on frequency were investigated. It was shown that the large local SAR appeared in the parts of the body nearest to the source when the source was located at 20cm from the body, whereas the local SAR were largest in the narrow sections such as the neck and legs when the source was farther than 80cm from the model. It was also shown that, for the near-field exposure in the resonant frequency region, the profile of the layer averaged SAR distribution along the main axis of the body of the human model depended little on frequency, and that the SAR distribution in the section perpendicular to the main axis of the human body depended on frequency. The maximum local SAR per gram tissue over the whole body model was also determined, showing that the ratios of the maximum local SAR to the whole-body averaged SAR for the near-field exposure were at most several times as large as the corresponding ratio for the far-field exposure, when the small source located farther than 20cm from the surface of the human model.

7521-7540hit(8249hit)