The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

6561-6580hit(6809hit)

  • A Numerical Simulation of the Effects of the Actual Lip Geometry on Acoustic Fields by a Three-Dimensional FEM

    Chengxiang LU  Takayoshi NAKAI  Hisayoshi SUZUKI  

     
    PAPER-Speech

      Vol:
    E77-A No:2
      Page(s):
    422-428

    This paper describes an implementation of the finite element method to examine the effects of actual lip shape on the sound radiation. A three-dimensional finite element approach by Galerkin method was used. The accuracy of the calculation of finite element method for the sound radiation was tested by comparing it with the exact solutions for a circular piston radiator on an infinite baffle. Using a set of finite element models of the vocal tract, we calculated the responses to a pure tone input and the sound fields over the frequency range of 100 Hz-7 kHz. The transfer functions are examined in detail for vowels /a/ and /i/ when the shape of the actual lips is simplified as a planeradiation surface. The effects of lip shape on the distribution of sound pressures are also shown in both the vocal tract and the surrounding space of the mouth opening.

  • On the Origin of Tunneling Currents in Scaled Silicon Devices

    Andreas SCHENK  Ulrich KRUMBEIN  Stephan MÜLLER  Hartmut DETTMER  Wolfgang FICHTNER  

     
    PAPER-Device Modeling

      Vol:
    E77-C No:2
      Page(s):
    148-154

    Tunneling generation becomes increasingly important in modern devices both as a source of leakage and for special applications. Mostly, the observed phenomena are attributed to band-to-band tunneling, although from early investigations of Esaki diodes it is well known that at lower field strengths trap-assisted tunneling is responsible for non-ideal IV-characteristics. In this paper we apply microscopic models of trap-assisted and band-to-band tunneling, which were derived from first-principle quantum-mechanical calculations, in a general multi-device simulator. Special simplified versions of the models were developed for the purpose of fast numerical computations. We investigate pn-junctions with different doping profiles to reveal the relative contribution of the two tunneling mechanisms. Simulated currents as function of voltage and temperature are presented for each individual process varying the basic physical parameters. It turns out that the slope of reverse IV-characteristics dominated by trap-assisted tunneling is similar to those which are determined by band-to-band tunneling, if the localized state of the recombination center is only weakly coupled to the lattice. In the model such a slope is produced by field-enhancement factors of the Shockley-Read-Hall lifetimes expressing the probability of tunneling into (or out of) excited states of the electron-phonon system. The temperature dependence of these field-enhancement factors compensates to a certain extent the expected strong temperature effect of the Shockley-Read-Hall process. The latter remains larger than the temperature variation of phonon-assisted band-to-band tunneling, but not as much as often stated. Consequently, the slope of the IV-characteristics and their temperature dependence are not the strong criteria to distinguish between trap-assisted and band-to-band tunneling. The origin of tunnel currents in silicon rather depends on the sum of physical conditions: junction gradient, nature and concentration of defects, temperature and voltage range.

  • Space-Time Galerkin/Least-Squares Finite Element Formulation for the Hydrodynamic Device Equations

    N. R. ALURU  Kincho H. LAW  Peter M. PINSKY  Arthur RAEFSKY  Ronald J. G. GOOSSENS  Robert W. DUTTON  

     
    PAPER-Numerics

      Vol:
    E77-C No:2
      Page(s):
    227-235

    Numerical simulation of the hydrodynamic semiconductor device equations requires powerful numerical schemes. A Space-time Galerkin/Least-Squares finite element formulation, that has been successfully applied to problems of fluid dynamic, is proposed for the solution of the hydrodynamic device equations. Similarity between the equations of fluid dynamic and semiconductor devices is discussed. The robustness and accuracy of the numerical scheme are demonstrated with the example of a single electron carrier submicron silicon MESFET device.

  • Ultra Optoelectronic Devices for Photonic ATM Switching Systems with Tera-bits/sec Throughput

    Takeshi OZEKI  

     
    INVITED PAPER

      Vol:
    E77-B No:2
      Page(s):
    100-109

    Photonic ATM switching systems with Terabit/s throughput are desirable for future broadband ISDN systems. Since electronic LSI-based ATM switching systems are planned to have the throughput of 160Gb/s, a photonic ATM switching system should take the role of the highest layer in a hybrid switching network which includes electronic LSI-based ATM switching systems as its sub-system. This report discusses the state-of-the-art photonic devices needed for a frequency-self-routing ATM photonic switching system with maximum throughput of 5Tb/s. This kind of systems seems to be a moderate system for the first phase photonic switching system with no insuperable obstacle for initiating development, even though none of the devices and technologies required have yet been developed to meet the specifications. On the contrary, for realizing further enlarged throughput as the second-phase photonic switching system, there are huge fundamental research projects still remaining for establishing the technology utilizing the spectrum broadened over 120nm and highly-dense FDM technologies based on homodyne coherent detection, if supposing a simple architecture. "Ultra devices" seem to be the photonic devices based on new tailored materials of which gain and refractive index are designed to realize ultra-wide spectrum utilization.

  • Channel-Grouping Methods on Go-Back-N ARQ Scheme in Multiple-Parallel-Channel System

    Chun-Xiang CHEN  Masaharu KOMATSU  Kozo KINOSHITA  

     
    LETTER-Communication Theory

      Vol:
    E77-B No:2
      Page(s):
    265-269

    We consider a communication system in which a transmitter is connected to a receiver through parallel channels, and the Go-Back-N ARQ scheme is used to handle transmission errors. A packet error on one channel results in retransmission of packets assigned to other channels under the Go-Back-N ARQ scheme. Therefore, the channel-grouping (a grouped-channel is used to transmit the same packet at a time), would affect the throughput performance. We analyze the throughput performance, and give a tree-algorithm to efficiently search for the optimal channel-grouping which makes the throughput to become maximum. Numerical results show that the throughput is largely improved by using the optimal channel-grouping.

  • 2 MHz Power Converter with Piezoelectric Ceramic Transformer

    Toshiyuki ZAITSU  Takeshi INOUE  Osamu OHNISHI  Yasuhiro SASAKI  

     
    PAPER-Electronic Circuits

      Vol:
    E77-C No:2
      Page(s):
    280-286

    A power converter with a new piezoelectric transformer is presented. The piezoelectric transformer, made of lead titanate solid solution ceramic, is operated with a thickness extensional vibration mode. This transformer can operate at high frequency, over several megahertz, with about 90% high efficiency. The resonant frequency for the transformer is 2 MHz. The power converter with the transformer applies the theory for a class-E switching converter using an electromagnetic transformer. Maximum output power was obtained when the switching frequency was slightly higher than the resonant frequency. 4.4 W output power was successfully obtained with 52% efficiency at 2.1 MHz switching frequency.

  • Throughput Performances of ARQ Protocols Operating over Generalized Two-State Markov Error Channel

    Masaharu KOMATSU  Yukuo HAYASHIDA  Kozo KINOSHITA  

     
    PAPER-Communication Theory

      Vol:
    E77-B No:1
      Page(s):
    35-42

    In this paper, we analyze the throughput of the Stop-and-wait and Go-back-N ARQ schemes over an unreliable channel modeled by the two-state Markov process. Generally, in these states, block error probabilities are different. From analytical results and numerical examples, we show that the throughput of the Stop-and-wait ARQ scheme only depends on overall average error probability, while that of the Go-back-N ARQ scheme depends on the characteristic of the Markov process.

  • Secure Addition Sequence and Its Application on the Server-Aided Secret Computation Protocols

    Chi-Sung LAIH  Sung-Ming YEN  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    81-88

    Server aided secret computation (SASC) protocol also called the verifiable implicit asking protocol, is a protocol such that a powerful untrusted auxiliary device (server) can help a smart card (client) for computing a secret function efficiently. In this paper, we extend the concept of addition sequence to the secure addition sequence and develop an efficient algorithm to construct such sequence. By incorporating the secure addition sequence into the SASC protocol the performance of SASC protocol can be further enhanced.

  • A Method for Estimating the Mean-Squared Error of Distributed Arithmetic

    Jun TAKEDA  Shin-ichi URAMOTO  Masahiko YOSHIMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E77-A No:1
      Page(s):
    272-280

    It is important for LSI system designers to estimate computational errors when designing LSI's for numeric computations. Both for the prediction of the errors at an early stage of designing and for the choice of a proper hardware configuration to achieve a target performance, it is desirable that the errors can be estimated in terms of a minimum of parameters. This paper presents a theoretical error analysis of multiply-accumulation implemented by distributed arithmetic(DA) and proposes a new method for estimating the mean-squared error. DA is a method of implementing the multiply-accumulation that is defined as an inner product of an input vector and a fixed coefficient vector. Using a ROM which stores partial products. DA calculates the output by accumulating the partial products bitserially. As DA uses no parallel multipliers, it needs a smaller chip area than methods using parallel multipliers. Thus DA is effectively utilitzed for the LSI implementation of a digital signal processing system which requires the multiply-accumulation. It has been known that, if the input data are uniformly distributed, the mean-squared error of the multiply-accumulation implemented by DA is a function of only the word lengths of the input, the output, and the ROM. The proposed method for the error estimation can calculate the mean-squared error by using the same parameters even when the input data are not uniformly distributed. The basic idea of the method is to regard the input data as a combination of uniformly distributed partial data with a different word length. Then the mean-squared error can be predicted as a weighted sum of the contribution of each partial data, where the weight is the ratio of the partial data to the total input data. Finally, the method is applied to a two-dimensional inverse discrete cosine transform (IDCT) and the practicability of the method is confirmed by computer simulations of the IDCT implemented by DA.

  • Software Reliability Measurement and Assessment with Stochastic Differential Equations

    Shigeru YAMADA  Mitsuhiro KIMURA  Hiroaki TANAKA  Shunji OSAKI  

     
    PAPER-Software Reliability

      Vol:
    E77-A No:1
      Page(s):
    109-116

    In this paper, we propose a plausible software reliability growth model by applying a mathematical technique of stochastic differential equations. First, we extend a basic differential equation describing the average behavior of software fault-detection processes during the testing phase to a stochastic differential equation of ItÔ type, and derive a probability distribution of its solution processes. Second, we obtain several software reliability measures from the probability distribution. Finally, applying a method of maximum-likelihood we estimate unknown parameters in our model by using available data in the actual software testing procedures, and numerically show the stochastic behavior of the number of faults remaining in the software system. Further, the model is compared among the existing software reliability growth models in terms of goodness-of-fit.

  • Frequency Characteristics of the Radiation Boundary Condition in Finite-Difference Time-Domain Method and Its Improvement

    Masao KODAMA  Mitsuru KUNINAKA  

     
    LETTER-Antennas and Propagation

      Vol:
    E77-B No:1
      Page(s):
    81-85

    When we use the finite-difference time-domain (FD-TD) method to study time-domain electromagnetic fields in the unbounded surroundings, we frequently use a radiation boundary condition (RBC) by means of one-way wave equations. The reflection coefficient by the RBC is independent of frequency, but the reflection coefficient of the finite difference approximation for the RBC depends on a frequency also; this study examines how the reflection characteristics are affected by the frequency, and the study presents the coefficients used in the RBC which gives expected reflection characteristics for a frequency, and presents the application to simulation of the matched termination of a rectangular waveguide.

  • Bending Loss Characteristics of MQW Optical Waveguides

    Takuya AIZAWA  K. G. RAVIKUMAR  Masaaki AKIYAMA  Tsutomu WATANABE  Toshisada SEKIGUCHI  Masahiro AGATA  Ryozo YAMAUCHI  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    50-55

    Optical waveguides are one of the key devices for photonic integrated circuits considered to be one of the candidates for optical interconnects. In particular lossless bend type waveguides are necessary to integrate different optical devices monolithically. In this paper, we report on the bending loss characteristics of the multi-quantum well bend waveguide with respect to the bend radius and lateral optical mode confinement. We show that to decrease the bending loss to less than 0.5 dB, it is necessary to increase either the confinement or the bend radius. For an example, when the confinement is around 85%, the bend radius should be more than 2 mm. We also show the application of the S-bend waveguides to directional coupler type optical switch.

  • Quasi-Instanton Solution for Ultrashort Baseband Optical Signals

    Kazuya HAYATA  Masanori KOSHIBA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2059-2061

    We extend the concept "optical instanton" to arbitrary dielectric media. For these general cases the exact analytical approach is no longer available. We derive an approximate analytical solution that would be valid in the vicinity of the light cone. A comparison is made between the analytical and the numerical solutions.

  • A Superresolution Technique for Antenna Pattern Measurements

    Yasutaka OGAWA  Teruaki NAKAJIMA  Hiroyoshi YAMADA  Kiyohiko ITOH  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1532-1537

    A new superresolution technique is proposed for antenna pattern measurements. Unwanted reflected signals often impinge on the antenna when we measure it outdoors. A time-domain superresolution technique (a MUSIC algorithm) has been proposed to eliminate the unwanted signal for a narrow pass-band antenna. The MUSIC algorithm needs many snapshots to obtain a correlation matrix. This is not preferable for antenna pattern measurements because it takes a long time to obtain the data. In this paper, we propose to reduce a noise component (stochastic quantity) using the FFT and gating techniques before we apply the MUSIC. The new technique needs a few snapshots and saves the measurement time.

  • Simultaneous Reconstruction for the Telegraph Equation in a Stratified Half-Space Using 3-D Reflectivity

    Sailing HE  Rasmus HELLBERG  Vaughan H. WESTON  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1538-1545

    The invariant imbedding method combined with the time domain wave splitting technique is applied to the inverse problem for the telegraph equation t2u=(1/r)(pu)-btu+qu in a stratified half-space. The zeroth, second and fourth moments of the 3-D fields are used to reduce the three-dimensional problem to a set of one-dimensional problems. The imbedding equations for R0, R2 and R4, respectively the zeroth, second and fourth moments of the reflection operator, are derived. Numerical results for the reconstruction are presented using the reflection data on the surface.

  • A Consideration of the Thin Planar Antenna with Wire-Grid Model

    Nozomu ISHII  Kiyohiko ITOH  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1518-1525

    A theoretical and experimental study of a thin card-sized antenna is presented. The method of moment with a wire-grid model is used to analyze this antenna. In order to validate numerical efficiency, measurements using Wheeler method are preformed on this antenna and its wire-grid models. The experimental and theoretical results are in good agreement if the wire conductivity is well chosen. And the noise reduction of measured Wheeler efficiency using least mean square method is also examined.

  • A Specific Design Approach for Automotive Microcomputers

    Nobusuke ABE  Shozo SHIROTA  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1788-1793

    When used for automotive applications, microcomputers have to meet two requirements more demanding than those for general use. One of these requirements is to respond to external events within a time scale of microseconds; the other is the high quality and high reliability necessary for the severe environmental operating conditions and the ambitious market requirements inherent to automotive applications. These needs especially the latter one have been responded to by further elaboration of each basic technology involved in semiconductor manufacturing. At the same time, various logic parts have been built into the microcomputer. This paper deals with several design approaches to the high quality and high reliability objective. First, testability improvement by the logical separation method focusing on the logic simulation model for generating test vectors, which enables us to reduce the time required for test vector development in half. Next, noise suppression methods to gain electromagnetic compatibility (EMC). Then, simplified memory transistor's analysis to evaluate the V/I-characteristics directly via external pins without opening the model seal, removing the passivation and placing a probe needle on the chip. Finally, increased reliability of on-chip EPROM using a special circuit raising the threshold value by approximately 1(V) compared to EPROM's without such a circuit.

  • Scene Interpretation with Default Parameter Models and Qualitative Constraints

    Michael HILD  Yoshiaki SHIRAI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:12
      Page(s):
    1510-1520

    High variability of object features and bad class separation of objects are the main causes for the difficulties encountered during the interpretation of ground-level natural scenes. For coping with these two problems we propose a method which extracts those regions that can be segmented and immediately recognized with sufficient reliability (core regions) in the first stage, and later try to extend these core regions up to their real object boundaries. The extraction of reliable core regions is generally difficult to achieve. Instead of using fixed sets of features and fixed parameter settings, our method employs multiple local features (including textural features) and multiple parameter settings. Not all available features may yield useful core regions, but those core regions that are extracted from these multiple features make a cntributio to the reliability of the objects they represent. The extraction mechanism computes multiple segmentations of the same object from these multiple features and parameter settings, because it is not possible to extract such regions uniquely. Then those regions are extracted which satisfy the constraints given by knowledge about the objects (shape, location, orientation, spatial relationships). Several spatially overlapping regions are combined. Combined regions obtained for several features are integrated to form core regions for the given object calss.

  • Calculation of the Potential Distribution around an Impurity-Atom-Wire--The Validity of the Thomas-Fermi Approximation--

    Tomonori SEKIGUCHI  Kazuhito FURUYA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E76-C No:12
      Page(s):
    1842-1846

    The potential distribution around a linear array of donor atoms in a semiconductor crystal is calculated, approximating the linear array by a continuous line charge. Two methods are used for the analysis. One is the self-consistent calculation of Poisson's equation and the effective mass Schrödinger's equation, and the other is the Thomas-Fermi approximation. Results of both methods agree very well, and it is shown that it is possible to form a potential distribution as fine as the electron wavelength by appropriate arrangement of the impurity atoms. Arrays of impurity atoms therefore can act as buiding elements for future electron wave devices.

  • Generating a Binary Markov Chain by a Discrete-Valued Auto-Regressive Equation

    Junichi NAKAYAMA  Hiroya MOTOYAMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E76-A No:12
      Page(s):
    2114-2118

    This paper gives a systematic approach to generate a Markov chain by a discrete-valued auto-regressive equation, which is a a nonlinear auto-regressive equation having a discrete-valued solution. The power spectrum, the correlation function and the transition probability are explicitly obtained in terms of the discrete-valued auto-regressive equation. Some computer results are illustrated in figures.

6561-6580hit(6809hit)