The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

6461-6480hit(6809hit)

  • Resonance Characteristics of Circularly Propagating Mode in a Coaxial Dielectric Resonator

    Qing HAN  Yoshinori KOGAMI  Yoshiro TOMABECHI  Kazuhito MATSUMURA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1747-1751

    A three-dimensional analysis of Whispering-Gallery modes (W. G. modes) in a coaxial dielectric resonator is proposed and presented. The coaxial dielectric resonator is constructed from a lossy dielectric disk and ring which have diameters of several tens times as large as wavelength. Eigenvalue equations of the W. G. modes are derived rigorously from field expressions and boundary conditions. The resonant frequencies, unloaded Q values and field distributions are calculated numerically from the eigenvalue equations. These calculated results are in good agreement with experimental ones for an X band model. As a result, it is shown that a considerable quantity of modal energy can be confined in a loss-less gap between the disk and ring, and then the unloaded Q value is higher than that of a conventional dielectric disk and ring resonator.

  • Mathodology for Latchup-Free Design in Merged BiPMOSs

    Youichiro NIITSU  

     
    PAPER-Integrated Electronics

      Vol:
    E77-C No:10
      Page(s):
    1668-1676

    The methodology for latchup-free design in bipolar and PMOS merged gates, so-called BiPMOS gates, is considered. Although BiPMOS gates can provide higher switching characteristics than conventional, individually drawn, BiCMOS gates even when the supply voltage is reduced, the general methodology to prevent latchup has been lacking. This paper presents an approximate, but sufficiently correct, mathematical technique to solve the Laplace equation, which gives the distribution of latchup trigger current for the given BiPMOS drawings. It is shown that the resistances of the collector plug and the spreading resistance under the base-collector junction greatly influence latchup, and that the well-emitter overlapping space becomes a problem in the case of a single collector. The distribution of latchup triggering current for the double-emitter double collector NPN transistor indicates the optimum position of the source diffusion area.

  • Object Oriented API for Operations System Development

    Kenji MINATO  Ikuo YODA  Nobuo FUJII  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E77-B No:10
      Page(s):
    1209-1219

    ISO and ITU-T have developed the standard concept of the Telecommunications Management Network (TMN). This standard does not, however, specify interface implementation. The user requires an Application Programming Interface (API) that bridges user application and the TMN concept to construct a TMN-based application. This paper proposes an object oriented API (OOAPI) that is suitable for TMN-based operations system implementation. OOAPI is one interface of the Common Management Information Service Element (CMISE), and uses the Common Management Information Protocol (CMIP). OOAPI is composed of two C++ programming language constructs: Data Object and Interface object "M_User". The Data Object makes it easier for the user to access management information. The M_User provides a connection-less CMISE interface because the OOAPI handles CMIP association automatically. The M_User also provides MO location-transparency by using the OSI Directory Service. This paper compares the existing MO location-transparency schemes with the OOAPI method, and clarifies the advantages of OOAPI. This paper also indicates results from OOAPI trials, and confirms that OOAPI has sufficient performance to implement highly effective TMN operations system.

  • A Cell Buffer Implementation Realizing CLP and Its Application

    Yasuro SHOBATAKE  

     
    PAPER-Switching and Communication Processing

      Vol:
    E77-B No:10
      Page(s):
    1194-1202

    A new cell buffer implementation method, called the counter approach, is presented in this paper. A cell buffer handling CLP with the push out scheme can be implemented using this approach. Also, using this approach, an element switch for a MIN with the window scheme can be realized. The experimental element switch LSI has already been fabricated and tested. The LSI proves the applicability of the counter approach to a high-speed ATM switching system.

  • On Quadratic Convergence of the Katzenelson-Like Algorithm for Solving Nonlinear Resistive Networks

    Kiyotaka YAMAMURA  

     
    PAPER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:10
      Page(s):
    1700-1706

    A globally and quadratically convergent algorithm is presented for solving nonlinear resistive networks containing transistors modeled by the Gummel-Poon model or the Shichman-Hodges model. This algorithm is based on the Katzenelson algorithm that is globally convergent for a broad class of piecewise-linear resistive networks. An effective restart technique is introduced, by which the algorithm converges to the solutions of the nonlinear resistive networks quadratically. The quadratic convergence is proved and also verified by numerical examples.

  • Measuring the Student Knowledge State in Concept Learning: An Approximate Student Model

    Enrique Gonzalez TORRES  Takeshi IIDA  Shigeyoshi WATANABE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:10
      Page(s):
    1170-1178

    Among the problems that face ITS designers, the problem of measuring the student knowledge state after concept learning in order to initially adapt a skill acquisition session according to a student's own necessities is a hard one. Typical approaches are the use of some sort of test to assess the student knowledge and choose an initial set of parameters for a session, or use, regardless the particular necessities of a student, a pre-defined set of initial parameters. We consider the fromer to be disrupting for learning and the latter too simple to deal with the broad possibilities that are faced. It is known that students show different behaviors during concept learning depending on the experience, background and actual understanding (the way a student is understanding a concept) during concept learning. Our approach here is to classify the different behaviors through fuzzy proposition and link them with a student model through fuzzy rules to use in an expert system, and with it, select the most suitable problem-solving strategy for each particular student in order to clear his misunderstandings and facilitate the learning of problem-solving skills. The use of probabilistic reasoning (i.e. Bayesian statistics) instead of fuzzy logic is not suitable for the present situation because of the rigidity and precision of the rules that do not allow a proper manipulation of the vagueness involved in the student behavior. We apply this idea to a circuit analysis ITS where the concept learning session is carried out on a Hypertext environment and the skill acquisition session on an interactive problem-solving environment. By tracing the student use of the Hypertext environment we can know the student behavior and use it as a premise in the fuzzy inference.

  • A Method to Validate the Correctness of Test Logic Programs Applied in a Protocol Conformance Test System Using Petri Nets

    Hiroto SUZUKI  Kohkichi TSUJI  Tetsuo ARAKI  Osamu TAKAHASHI  Shizuo YOSHITAKE  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1663-1671

    As to the method of multi-layer testing, up to now, the testing system (called PROVES) which testes effectively each N-layer protocol implement of SUT (System Under Test) using the functions of derail-points located between N-layer and (N+1)-layer protocol implements in a test system has been proposed. The test logic programs, which are embedded in the derail-points of the test system, play an important role to realize the protocol error test sequences in the test system. Namely, they modify, add, or delete the correct protocol commands/responses output from the protocol implement part of the lest system, sends these erroneous commands/responses to SUT and observes the output from SUT. This paper proposes the method of validating the correctness of test logic program using the structural properties of Petri nets without coding the test logic programs, where correctness means that the desired output can be obtained by sending or receiving the commands/responses within a constant time under the initial conditions determined uniquely by the test system and SUT. According to our experiment, it is seen that almost all of the logical errors included in the test logic programs used for the experiment can be detected by this method.

  • Coaxial SMD Module Connector for High-Speed MCM

    Shinichi SASAKI  Tohru KISHIMOTO  Nobuaki SUGIURA  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1575-1580

    This paper describes a trial coaxial surface mounted connector for PGA-type high-speed multichip modules (MCM). An MCM connector is needed to ensure testability and connection reliability of MCMs mounted on a printed circuit board. Our connector consists of a coaxial elements, a common ground housing made of conductive resin, and a ground contact spring plate. It has 68 signal contacts. We investigated the performance of this connector by experiment and simulation. Its insertion force is only about 53 gf per signal pin. The characteristic impedance is from 45.6 Ω to 61.4 Ω. The average resistance between two contacts is 28 mΩ with a deviation of less than plus or minus 5 mΩ. The insertion is -0.4 dB at 1.0 GHz. Crosstalk noise is less than 1.2%. This prototype connector can transmit pulses of up to 1.2 Gb/s, showing that it is applicable to high-speed MCMs.

  • A 1.3µm Single-Mode 22 Liquid Crystal Optical Switch

    Yoshiro HAKAMATA  Tetsuo YOSHIZAWA  Tohru KODAIRA  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:10
      Page(s):
    1249-1255

    This paper describes a newly developed 22 liquid crystal optical switch for 1.3µm single-mode fiber use. This switch state can be freely set at either the cross or the bar state. The measured performance of two prototype 22 liquid crystal optical switches is given. Tests confirm that the 3 values are a maximum insertion loss of 1.5dB, a crosstalk attenuation of more than 26.1dB, and a return loss of more than 28.9dB. Requirements for optical switches for fault isolation are theoretically clarified from a LAN system view point.

  • Mapping QR Decomposition on Parallel Computers: A Study Case for Radar Applications

    Antonio d'ACIERNO  Michele CECCARELLI  Alfonso FARINA  Alfredo PETROSINO  Luca TIMMONERI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:10
      Page(s):
    1264-1271

    The sidelobe canceler in radar systems is a highly computational demanding problem. It can be efficiently tackled by resorting to the QR decomposition mapped onto a systolic array processor. The paper reports several mapping strategies by using massive parallel computers available on the market. MIMD as well as SIMD machines have been used, specifically MEIKO Computing Surface, nCUBE2, Connection Machine CM-200, and MasPar MP-1. The achieved data throughput values have been measured for a number of operational situations of practical interest.

  • Graphical Analysis for k-out-of-n: G Repairable System and Its Application

    Ikuo ARIZONO  Akihiro KANAGAWA  

     
    LETTER-Algorithms, Data Structures and Computational Complexity

      Vol:
    E77-A No:9
      Page(s):
    1560-1563

    Kumar and Billinton have presented a new technique for obtaining the steady-state probabilities from a flow graph based on Markov model. By examining the graph and choosing suitable input and output nodes, the steady-state probabilities can be obtained directly by using the flow graph. In this paper this graphical technique is applied for a k-out-of-n: G repairable system. Consequently a new derivation way of the formulae for the steady-state availability and MTBF is obtained.

  • An LS Based New Gradient Type Adaptive Algorithm--Least Squares Gradient--

    Kiyoshi NISHIKAWA  Hitoshi KIYA  

     
    PAPER-Adaptive Digital Filters

      Vol:
    E77-A No:9
      Page(s):
    1417-1425

    A new gradient type adaptive algorithm is proposed in this paper. It is formulated based on the least squares criteria while the conventional gradient algorithms are based on the least mean square criteria. The proposed algorithm has two variable parameters and by changing them we can adjust the characteristic of the algorithm from the RLS to the LMS depending on the environment. This capability of adjustment achieves the possibility of providing better solutions. However, not only it provides better solutions than the conventional algorithms under some conditions but also it provides a very interesting theoretical view point. It provides a unified view point of the adaptive algorithms including the conventional ones, i.e., the LMS or the RLS, as limited cases and it enables us to analyze the bounds for those algorithms.

  • Extraction of Inphase and Quadrature Components from Oversampled Bandpass Signals Using Multistage Decimator with BPFs and Its Performance Evaluation

    Takashi SEKIGUCHI  Tetsuo KIRIMOTO  

     
    PAPER-Multirate Signal Processing

      Vol:
    E77-A No:9
      Page(s):
    1457-1465

    We present a method of extracting the digital inphase (I) and quadrature (Q) components from oversampled bandpass signals using narrow-band bandpass Hilbert transformers. Down-conversion of the digitized IF signals to baseband and reduction of the quantization noise are accomplished by the multistage decimator with the complex coefficient bandpass digital filters (BPFs), which construct the bandpass Hilbert transformers. Most of the complex coefficient BPFs in the multistage decimator can be replaced with the lowpass filters (LPFs) under some conditions, which reduces computational burden. We evaluate the signal to quantization noise ratio of the I and Q components for the sinusoidal input by computer simulation. Simulation results show that the equivalent amplitude resolution of the I and Q components can be increased by 3 bits in comparison with non-oversampling case.

  • Optimum Order Assignment on Numerator and Denominator for IIR Adaptive Filters Adjusted by Equation Error

    Asadual HUQ  Zhiqiang MA  Kenji NAKAYAMA  

     
    PAPER-Adaptive Digital Filters

      Vol:
    E77-A No:9
      Page(s):
    1439-1444

    For system identification problems, such as noise and echo cancellation, FIR adaptive filters are mainly used for their simple adaptation and numerical stability. When the unknown system is a high-Q resonant system, having a very long impulse response, IIR adaptive filters are more efficient for reduction in the order of a transfer function. One way to realize the IIR adaptive filter is a separate form, in which the numerator and the denominator are separately realized and adjusted. In the actual applications, the order of the unknown system is not known. In this case, it is very important to estimate the total order and the order assignment on the numerator and the denominator. In this paper, effects of the order estimation error on the residual error are investigated. In this form, indirect error evaluation called "equation error" is used. Through theoretical and numerical investigation, the following results are obtained. First, under estimation of the order of the denominator causes large degradation. Second, over estimation can improve the performance. However, this improvement is saturated to some extent due to cancellation of the redundant poles and zeros. Third, the system identification error is proportional to the equation error as the adaptive filter approaching the optimum. Finally, there is possibility of recovering from the unstable state as the order assignment approaches to the optimum in an adaptive process using the equation error. Computer solutions are provided to aid in gaining insight of the order assignment and stability problem.

  • Fabrication of Silicon Quantum Wires and Dots

    Yoshihiko HIRAI  Kiyoshi MORIMOTO  Masaaki NIWA  Koichiro YUKI  Juro YASUI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1426-1430

    Fabrication methods of novel silicon quantum wires and dots using anisotropic wet chemical etching and thermal oxidation are newly proposed. The method realizes fine Si quantum wires, which are fully surrounded by the thermal SiO2 without any defects. The wires are straight and the Si/SiO2 interfaces are fairly flat. The 10 nm width wires are confirmed by Transmitting Scanning Microscopy observation in minimum size. The fine quantum dots are also fabricated using this method. The characteristics of the wires are investigated and the current oscillations in variation with the gate voltage are observed in low temperature. We believe the origin of these oscillations arise from one-dimensional subband conduction.

  • A Fault Model for Multiple-Valued PLA's and Its Equivalences

    Yasunori NAGATA  Masao MUKAIDONO  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:9
      Page(s):
    1527-1534

    In this paper, a fault model for multiple-valued programmable logic arrays (MV-PLAs) is proposed and the equivalences of faults of MV-PLA's are discussed. In a supposed multiple-valued NOR/TSUM PLA model, it is shown that multiple-valued stuck-at faults, multiple-valued bridging faults, multiple-valued threshold shift faults and other some faults in a literal generator circuit are equivalent or subequivalent to a multiple crosspoint fault in the NOR plane or a multiple fault of weights in the TSUM plane. These results lead the fact that multiple-valued test vector set which indicates all multiple crosspoint fault and all multiple fault of weights also detects above equivalent or subequivalent faults in a MV-PLA.

  • RCS of a Parallel-Plate Waveguide Cavity with Three-Layer Material Loading

    Shoichi KOSHIKAWA  Takeshi MOMOSE  Kazuya KOBAYASHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E77-C No:9
      Page(s):
    1514-1521

    A rigorous radar cross section (RCS) analysis of a two-dimensional parallel-plate waveguide cavity with three-layer material loading is carried out for the E- and H-polarized planc wave incidence using the Wiener-Hopf technique. Introducing the Fourier transform for the scattered field and applying boundary conditions in the transform domain, the problem is formulated in terms of the simultaneous Wiener-Hopf equations satisfied by the unknown spectral functions. The Wiener-Hopf equations are solved via the factorization and decomposition procedure together with rigorous asymptotics, leading to the efficient approximate solution. The scattered field in the real space is evaluated by taking the inverse Fourier transform and applying the saddle point method. Representative numerical examples on the RCS are given for various physical parameters. It is shown that the three-layer lossy material loading inside the cavity results in significant RCS reduction over broad frequency range.

  • Growth and Characterization of Nanometer-Scale GaAs, AlGaAs and GaAs/InAs Wires

    Kenji HIRUMA  Hisaya MURAKOSHI  Masamitsu YAZAWA  Kensuke OGAWA  Satoru FUKUHARA  Masataka SHIRAI  Toshio KATSUYAMA  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1420-1425

    Ultrathin GaAs, AlGaAs and GaAs/InAs wire crystals (whiskers) as thin as 20-50 nm are grown by organometallic vapor phase epitaxy (OMVPE) using Au as a growth catalyst. It is found that the whisker shape and width can be controlled by adjusting the thickness of the Au deposited on the substrate surface and the substrate temperature duing OMVPE. A new technique employing a scanning tunneling microscope (STM) for controlling the whisker growth position on the substrate surface is described. Photoluminescence spectra from the GaAs whiskers show a blue shift of the luminescene peak energy as the whisker width decreases. The amount of blue shift energy is rather small compared to that calculated by a simple square potential well model. The discrepancy is explained by the cylindrical potential well model including the surface depletion effect. Atomic composition within the portion of 1-20 nm along the AlGaAs and GaAs/InAs whiskers has been analyzed by energy dispersive X-ray analysis in combination with transmission electron microscopy. This shows the exsitence of Au at the tip of the whisker and the composition change occurs over a length of less than 5 nm at the GaAs/InAs heterojunction.

  • High-Performance Small-Scale Collector-Up AlGaAs/GaAs HBT's with a Carbon-Doped Base Fabricated Using Oxygen-Ion Implantation

    Shoji YAMAHATA  Yutaka MATSUOKA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1437-1443

    We report the development of high-performance small-scale AlGaAs/GaAs collector-up heterojunction bipolar transistors (C-up HBT) with a carbon (C)-doped base layer. Oxygen-ion (O+) implantation is used to define their intrinsic emitter/base junctions and zinc (Zn)-diffusion is used to lower the resistivity of their O+-implanted extrinsic base layers. The highly resistive O+-implanted AlGaAs layer in the extrinsic emitter region sufficiently suppresses electron injection even under high-forward-bias conditions, allowing high collector current densities. The use of a C-doped base is especially effective for small-scale C-up HBT's because it suppresses the undesirable turn-on voltage shift caused by base dopant diffusion in the intrinsic area around the collector-mesa perimeter that occurs during the high-temperature Zn-diffusion process after implantation. Even in a small-scale trasistor with a 2 µm2 µm collector, a current gain of 15 is obtained. A microwave transistor with a 2 µm10 µm collector has a cutoff frequency fT of 68 GHz and a maximum oscillation frequency fmax of 102 GHz. A small-scale C-up HBT with a 2 µm2 µm collector shows a higher fmax of 110 GHz due to reduced base/collector capacitance CBC and its fmax remains above 100 GHz, even at a low collector current of 1 mA. The CBC of this device is estimated to be as low as 2.2 fF. Current gain dependence on collector size is also investigated for C-up HBT's and it is found that the base recombination current around the collector-mesa perimeter reduces the current gain.

  • Adaptive Modulation/TDMA Scheme for Large Capacity Personal Multi-Media Communication Systems

    Seiichi SAMPEI  Shozo KOMAKI  Norihiko MORINAGA  

     
    PAPER

      Vol:
    E77-B No:9
      Page(s):
    1096-1103

    This paper proposes an adaptive modulation/TDMA scheme to achieve high capacity personal multi-media communication systems. TDMA is employed to cope with various bit rate for multi-media services. The modulation scheme is selected from 1/4-rate QPSK, 1/2-rate QPSK, QPSK, 16QAM and 64QAM according to the received C/IC (power ratio of the desired signal to the co-channel interference) and the delay spread. The spectral efficiency is evaluated by using the simulated bit error rate (BER) performance as well as the cumulative distribution of the C/IC with parameters of cell configurations. The results show that the spectral efficiency of the proposed scheme is 3.5 times higher than that of the conventional QPSK systems at the outage probability of 10%, and the effect is more remarkable at lower outage probability. The results also show that the proposed adaptive modulation is effective in improving delay spread immunity.

6461-6480hit(6809hit)