The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

6441-6460hit(6809hit)

  • Analysis of Pulse Responses of Multi-Conductor Transmission Lines by a Partitioning Technique

    Yuichi TANJI  Lingge JIANG  Akio USHIDA  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2017-2027

    This paper discusses pulse responses of multi-conductor transmission lines terminated by linear and nonlinear subnetworks. At first step, the circuit is partitioned into a linear transmission lines and nonlinear subnetworks by the substitution voltage sources. Then, the linear subnetworks are solved by a well-known phasor technique, and the nonlinear subnetworks by a numerical integration technique. The variational value at each iteration is calculated by a frequency domain relaxation method to the associated linearized time-invariant sensitivity circuit. Although the algorithm can be efficiently applied to weakly nonlinear circuits, the convergence ratio for stiff nonlinear circuits becomes very small. Hence, we recommend to introduce a compensation element which plays very important role to weaken the nonlinearity. Thus, our algorithm is very simple and can be efficiently applied to wide classes of nonlinear circuits.

  • A Study on Objective Picture Quality Scales for Pictures Digitally Encoded for Broadcast

    Hiroyuki HAMADA  Seiichi NAMBA  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1480-1488

    Considering the trend towards adopting high efficiency picture coding schemes into digital broadcasting services, we investigate objective picture quality scales for evaluating digitally encoded still and moving pictures. First, the study on the objective picture quality scale for high definition still pictures coded by the JPEG scheme is summarized. This scale is derived from consideration of the following distortion factors; 1) weighted noise by the spatial frequency characteristics and masking effects of human vision, 2) block distortion, and 3) mosquito noise. Next, an objective picture quality scale for motion pictures of standard television coded by the hybrid DCT scheme is studied. In addition to the above distortion factors, the temporal frequency characteristics of vision are also considered. Furthermore, considering that all of these distortions vary over time in motion pictures, methods for determining a single objective picture quality value for this time varying distortion are examined. As a result, generally applicable objective picture quality scale is obtained that correlates extremely well with subjective picture quality scale for both still and motion pictures, irrespective of the contents of the pictures. Having an objective scale facilitates automated picture quality evaluation and control.

  • Piezoelectric Ceramic Transformer for Power Supply Operating in Thickness Extensional Vibration Mode

    Osamu OHNISHI  Yasuhiro SASAKI  Toshiyuki ZAITSU  Hiromi KISHIE  Takeshi INOUE  

     
    PAPER-Ultrasonics

      Vol:
    E77-A No:12
      Page(s):
    2098-2105

    This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulated power supplies. This piezoelectric transformer operates in the second thickness extensional vibration mode. Its resonant frequency is higher than 1 MHz. First, numerical simulation was implemented using a distributed constant electromechanical equivalent circuit method. It was calculated that this piezoelectric transformer, which has higher than 200 mechanical quality factor Qm, could work with higher than 90% efficiency and in more than 20-W/cm3 high power density. Second, a trially fabricated transformer, which is 15 mm long, 15 mm wide and 2.2 mm thick, was examined. Modified PbTiO3 family ceramics were used for the piezoelectric transformer material, because of the large anisotropy between electromechanical coupling factors kt and kp. Obtained results indicate that the piezoelectric transformer has good resonant characteristics, with little spurious vibration, and exhibits 16-W/cm3 power density with high efficiency at 2 MHz. Moreover, a switching regulated power supply, applying the piezoelectric ceramic transformer, was built and examined.

  • Neural Networks for Digital Sequential Circuits

    Hiroshi NINOMIYA  Hideki ASAI  

     
    LETTER-Neural Networks

      Vol:
    E77-A No:12
      Page(s):
    2112-2115

    In this letter an SR-latch circuit using Hopfield neural networks is introduced. An energy function suited for a neural SR-latch circuit is defined for which the global convergence is guaranteed. We also demonstrate how to compose master-slave (M/S) SR- and JK-flip flops of novel SR-latch circuits, and further an asynchronous binary counter of M/S JK-flip flops. Computer simulations are included to illustrate how each presented circuit operates.

  • A Reduced Scan Shift Method for Sequential Circuit Testing

    Yoshinobu HIGAMI  Seiji KAJIHARA  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2010-2016

    This paper presents a method, called reduced scan shift, which generates short test sequences for full scan circuits. In this method, scan shift operations can be reduced, i.e., not all but part of flip-flops (FFs) are controlled and observed. This method, unlike partial scan methods, does not decrease fault coverage. In the reduced scan shift, test vectors for the combinational part of a circuit are fistly generated. Since short test sequence will be obtained from the small test vectors set, test compaction techniques are used in the test vector generation. For each test vector in the obtained test set, it is found which FFs should be controlled or observed. And then a scan chain is configured so that FFs more frequently required to be controlled (observed) can be located close to the scan input (output). After the scan chain is configured, the scan shift requirement is examined for the essential faults of each test vector. Essential fault is defined to be a fault which is detected by only one test vector but not other test vectors. The order of test vectors is carefully determined by comparing the scan control requirement of a test vector with the scan observation requirement of another test vector so that unnecessary scan shift operations only for controlling or observing FFs can be reduced. A method of determining the order of test vectors with state transition is additionally described. The effectiveness of the proposed method is shown by the experimental results for benchmark circuits.

  • Virtual Rate-Based Queueing: A Generalized Queueing Discipline for Switches in High-Speed Networks

    Yusheng JI  Shoichiro ASANO  

     
    PAPER-Switching and Communication Processing

      Vol:
    E77-B No:12
      Page(s):
    1537-1545

    A new rate-controlled queueing discipline, called virtual rate-based queueing (VRBQ), is proposed for packet-switching nodes in connection-oriented, high-speed, wide-area networks. The VRBQ discipline is based on the virtual rate which has a value between the average and peak transmission rates. By choosing appropriate virtual rates, various requirements can be met regarding the performance and quality of services in integrated-service networks. As the worst-case performance guarantee, we determine the upper bounds of queueing delay when VRBQ is combined with an admission control mechanism, i.e., Dynamic Time Windows or Leaky Bucket. Simulation results demonstrate the fairness policy of VRBQ in comparison with other queueing disciplines, and the performance of sources controlled under different virtual rates.

  • Askant Vision Architecture Using Warp Model of Hough Transform--For Realizing Dynamic & Central/Peripheral Camera Vision--

    Hiroyasu KOSHIMIZU  Munetoshi NUMADA  Kazuhito MURAKAMI  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1206-1212

    The warp model of the extended Hough transform (EHT) has been proposed to design the explicit expression of the transform function of EHT. The warp model is a skewed parameter space (R(µ,ξ), φ(µ,ξ)) of the space (µ,ξ), which is homeomorphic to the original (ρ,θ) parameter space. We note that the introduction of the skewness of the parameter space defines the angular and positional sensitivity characteristics required in the detection of lines from the pattern space. With the intent of contributing some solutions to basic computer vision problems, we present theoretically a dynamic and centralfine/peripheral-coarse camera vision architecture by means of this warp model of Hough transform. We call this camera vision architecture askant vision' from an analogy to the human askant glance. In this paper, an outline of the EHT is briefly shown by giving three functional conditions to ensure the homeomorphic relation between (µ,ξ) and (ρ,θ) parameter spaces. After an interpretation of the warp model is presented, a procedure to provide the transform function and a central-coarse/peripheralfine Hough transform function are introduced. Then in order to realize a dynamic control mechanism, it is proposed that shifting of the origin of the pattern space leads to sinusoidal modification of the Hough parameter space.

  • Design Requirements and Architectures for Multicast ATM Switching

    Wen De ZHONG  Kenichi YUKIMATSU  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1420-1428

    By addressing design requirements for multicast ATM switching, this paper attempts to provide an integrated view of modular and expandable switch architectures suitable for both unicast and multicast switching for future B-ISDNs. Several large and modular multicast ATM switching architectures are discussed, each of which handles different traffic situations. These architectures consist of multiple shared-buffer copy network modules of adequate size suitable for fabrication on a single chip, and small output memory switch modules. A new modular link-grouped multistage interconnection network is proposed for interconnecting copy network modules and memory switch modules, so that future large multicast ATM switching networks can be built in a modular fashion. The described modular architectures can significantly facilitate signal synchronization in large-scale switching networks.

  • A Study of the LC Resonant Circuit Security Tags

    Kiyoshi INUI  Hiroshi TADA  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1951-1953

    The design theory was revealed by theoretical analysis of the measuring apparatus, and was confirmed experimentally. Higher quality tags having new circuit disigns were proposed by the revealed theory. The measuring apparatus equivalent to the security system was produced to estimate the properties of the LC resonant circuit security tags quantitatively.

  • Application of a Boundary Matching Technique to an Inverse Problem for Circularly Symmetric Objects

    Kenichi ISHIDA  Takato KUDOU  Mitsuo TATEIBA  

     
    LETTER

      Vol:
    E77-C No:11
      Page(s):
    1837-1840

    We present a novel algorithm to reconstruct the refractive-index profile of a circularly symmetric object from measurements of the electromagnetic field scattered when the object is illuminated by a plane wave. The reconstruction algorithm is besed on an iterative procedure of matching the scattered field calculated from a certain refractive-index distribution with the measured scattered field on the boundary of the object. In order to estimate the convergence of the reconstruction, the mean square error between the calculated and measured scattered fields is introduced. It is shown through reconstructing several examples of lossy dielectric cylinders that the algorithm is quite stable and is applicable to high-contrasty models in situations where the Born approximation is not valid.

  • A Dynamic Bias Current Technique for a Bipolar Exponential–Law Element and a CMOS Square–Law Element Usable with Low Supply Voltage

    Katsuji KIMURA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1922-1928

    An emitter–coupled pair with a dynamic bias current and a source–coupled pair with a dynamic bias current are proposed as an exponential–law element and a square–law element that operate as a floating bipolar junction transistor (BJT) and a floating MOS field–effect transistor (MOSFET). In bipolar technology, a hyperbolic sine function circuit and a hyperbolic cosine function circuit are easily obtained by subtracting and summing the output currents of two symmetrical exponential–law elements with positive and negative input signals. In the same manner, an operational transconductance amplifier (OTA) and a squaring circuit are obtained by subtracting and summing the output currents of two symmetrical square-law elements with positive and negative input signals in CMOS technology. The proposed OTA and squaring circuit possess the widest input voltage range ever reported.

  • Bifurcations of the Quasi–Periodic Solutions of a Coupled Forced van der Pol Oscillator

    Olivier PAPY  Hiroshi KAWAKAMI  

     
    PAPER-Bifurcation of van der Pol Oscillators

      Vol:
    E77-A No:11
      Page(s):
    1788-1793

    In this paper we study the bifurcation phenomena of quasi–periodic states of a model of the human circadian rhythm, which is described by a system of coupled van der Pol equations with a periodic external forcing term. In the system a periodic or quasi–periodic solution corresponds to a synchronized or desynchronized state of the circadian rhythm, respectively. By using a stroboscopic mapping, called a Poincar mapping, the periodic or quasi–periodic solution is reduced to a fixed point or an invariant closed curve (ab. ICC). Hence we can discuss the bifurcations for the periodic and quasi–periodic solutions by considering that of the fixed point and ICC of the mapping. At first, the geometrical behavior of the 3 generic bifurcations, i.e., tangent, Hopf and period doublig bifurcations, of the periodic solutions is given, Then, we use a qualitative approach to bring out the similar behavior for the bifurcations of the periodic and quasi–periodic solutions in the phase space and in the Poincarsection respectively. At last, we show bifurcation diagrams concerning both periodic and quasi–periodic solutions, in different parameter planes. For the ICC, we concentrate our attention on the period doubling cascade route to chaos, the folding of the parameter plane, the windows in the chaos and the occurrence of the type I intermittency.

  • Bifurcations of Quasi–Periodic Responses in Coupled van der Pol Oscillators with External Force

    Tetsuya YOSHINAGA  Hiroshi KAWAKAMI  

     
    PAPER-Bifurcation of van der Pol Oscillators

      Vol:
    E77-A No:11
      Page(s):
    1783-1787

    Bifurcations of quasi–periodic responses in an oscillator described by conductively coupled van der Pol equations with a sinusoidal forcing term are investigated. According to the variation of three base frequencies, i.e., two natural frequencies of oscillators and the forcing frequency, various nonlinear phenomena such as harmonic or subharmonic synchronization, almost synchronization and complete desynchronization are ovserved. The most characteristic phenomenon observed in the four–dimensional nonautonomous system is the occurrence of a double Hopf bifurcation of periodic solutions. A quasi–periodic solution with three base spectra, which is generated by the double Hopf bifurcation, is studied through an investigation of properties of limit cycles observed in an averaged system for the original nonautonomous equations. The oscillatory circuit is particularly motivated by analysis of human circadian rhythms. The transition from an external desynchronization to a complete desynchronization in human rest–activity can be referred to a mechanism of the bifurcation of quasi–periodic solutions with two and three base spectra.

  • Crosstalk Observed on the Background of the Transmitted Image through a Short Image Fiber

    Akira KOMIYAMA  Masahiro HASHIMOTO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1808-1813

    In an image fiber containing a large number of cores, a certain class of crosstalk has been found to decrease with the distance along the fiber axis. This crosstalk is absolutely distinguished from the usual crosstalk that increases with the distance. A theoretical model is presented based on the power transfer between three groups of modes supported by each core. The process of power transfer is described by coupled power equations. Values of the coupling coefficients can be determined from the measurement of the crosstalk. The equations are solved numerically for the transmission of a point image. The results are in good agreement with measurement results.

  • Learning Model Structures from Images

    Andreas HELD  Keiichi ABE  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1281-1290

    Based on a newly proposed notion of relational network, a novel learning mechanism for model acquisition is developed. This new mechanism explicitly deals with both qualitative and quantitative relations between parts of an object. Qualitative relations are mirrored in the topology of the network. Quantitative relations appear in the form of generalized predicates, that is, predicates that are graded in their validity over a certain range. Starting from a decomposition of binary objects into meaningful parts, first a description of the decomposition in terms of relational networks is obtained. Based on the description of two or more instances of the same concept, generalizations are obtained by first finding matchings between instances. Generalizing itself proceeds on two levels: the topological and the predicate level. Topological generalization is achieved by a simple rule-based graph generalizer. Generalization of the predicates uses some ideas from MYCIN. After successful generalization, the system attempts to derive a simple and coarse description of the achieved result in terms of near natural language. Several examples underline the validity of relational networks and illustrate the performance of the proposed system.

  • Response of PLL Demodulator by Two Sinusoidal Inputs

    Takahiro OIE  Tadamitsu IRITANI  Hiroshi KAWAKAMI  

     
    PAPER-Analysis of Phase Locked Loops

      Vol:
    E77-A No:11
      Page(s):
    1771-1776

    In this paper, we subjects the case that frequency–shift–keying (FSK) modulation and phase locked loop (PLL) demodulator are used in frequency hopped spread spectrum (FH–SS) communication system. So the carrier frequencies of undesired transmitters may come into collision with the carrier frequency of desired transmitter in this communication system, we evaluate the response of PLL by two sinusoidal inputs so as to estimate how the response of PLL demodulator is affected by the collision of carrier frequencies. First, we compute the synchronization diagrams of PLL with two sinusoids. From this, it is indicated that allowable value of amplitude ratio of interference transmitter's signal to disired transmitter's signal decreases with increasing FSK modulation width of desired transmitter. Next, we calculated the output of PLL demodulator with two sinusoids. To this end, it is shown that the allowable value of amplitude ratio is bounded by a constant value even if FSK modulation width is enough small.

  • Explicit Evaluations of Correlation Functions of Chebyshev Binary and Bit Sequences Based on Perron–Frobenius Operator

    Tohru KOHDA  Akio TSUNEDA  

     
    PAPER-Chaos and Related Topics

      Vol:
    E77-A No:11
      Page(s):
    1794-1800

    Binary sequences with good correlation properties are required for a variety of engineering applications. We previously proposed simple methods to generate binary sequences based on chaotic nonlinear maps. In this paper, statistical properties of chaotic binary sequences generated by Chebyshev maps are discussed. We explicitly evaluate the correlation functions by means of the ensemble–average technique based on the Perron–Frobenius (P–F) operator. As a consequence, we can confirm an important role of the P–F operator in evaluating statistics of chaos by means of the ensemble-average technique.

  • On Some Dynamical Properties of Threshold and Homogeneous Networks

    Hiromi MIYAJIMA  Shuji YATSUKI  Noritaka SHIGEI  Sadayuki MURASHIMA  

     
    PAPER-Neural Network and Its Applications

      Vol:
    E77-A No:11
      Page(s):
    1823-1830

    It is known that homogeneous networks are ones which perform parallel algorithms, and the dynamics of neural networks are applied to practical problems including combinatorial optimization problems. Both homogeneous and neural networks are parallel networks, and are composed of Boolean elements. Although a large number of studies have been made on the applications of homogeneous threshold networks, little is known about the relation of the dynamics of these networks. In this paper, some results about the dynamics, used to find the lengths of periodic and transient sequences, as built by parallel networks including threshold and homogeneous networks are shown. First, we will show that for non–restricted parallel networks, threshold networks which permit only two elements to transit at each step, and homogeneous networks, it is possible to build periodic and transient sequences of almost any lengths. Further, it will be shown that it is possible for triangular threshold networks to build periodic and transient sequences with short lengths only. As well, homogeneous threshold networks also seem to build periodic and transient sequences with short lengths only. Specifically, we will show a sufficient condition for symmetric homogeneous threshold networks to have periodic sequences with the length 1.

  • Excellent Linearly Frequency-Swept Light Source for Sensing System Utilizing FMCW Technique

    Lu-Tang WANG  Koichi IIYAMA  Ken-ichi HAYASHI  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1716-1721

    We propose and demonstrate an excellent linearly frequency-swept laser diode (LD) for sensing system utilizing frequency-moduleted continuous-wave (FMCW) technique. In order to linearly sweep the optical frequency, we adopt a reference interferometer and an electric phase comparator. The interference beat signal of the reference interferometer is phase-compared with an external reference rectangular signal having a fixed frequency near the interference beat signal frequency by a lock-in amplifier. The error signal from the lock-in amplifier is fed back to the modulating signal of the injection current of the LD. Thus, a phase-locked loop composed of optical and electric circuits can be established, and the beat signal frequency is locked to the frequency of the reference signal. The optical frequency of the LD is, therefore, excellently linearly swept in time. In order to experimentally confirm the linearlity of the proposed method, we apply this light source to the FMCW reflectometry. Resultingly, the improvement of the linearity is estimated to be about 10 dB. And the theoretically limited spatial resolution of the FMCW reflectometry is achieved.

  • Interpolation Technique of Fingerprint Features for Personal Verification

    Kazuharu YAMATO  Toshihide ASADA  Yutaka HATA  

     
    LETTER

      Vol:
    E77-D No:11
      Page(s):
    1306-1309

    In this letter we propose an interpolation technique for low-quality fingerprint images for highly reliable feature extraction. To improve the feature extraction rate, we extract fingerprint features by referring to both the interpolated image obtained by using a directional Laplacian filter and the high-contrast image obtained by using histogram equalization. Experimental results show the applicability of our method.

6441-6460hit(6809hit)