The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

6421-6440hit(6809hit)

  • Electromagnetic Environments Generated by Power Transmission System

    Seietsu TOMITA  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    120-126

    Electromagnetic environments generated by power transmission system, possibilities of the interference and its mitigation method was introduced. In the frequency region below 10kHz, concern for DC and AC electric and magnetic field are described. In the frequency range above 10kHz, concern for discharges on power apparatus, electromagnetic emvironments generated by carrier system and fault locating system and passive interference are described. Electromagnetic environment caused by load equipments, that is harmonics, and undesirable electromagnetic emission from power converting units are described finally.

  • The Optimum Approximation of Multi-Dimensional Signals Based on the Quantized Sample Values of Transformed Signals

    Takuro KIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E78-A No:2
      Page(s):
    208-234

    A systematic theory of the optimum multi-path interpolation using parallel filter banks is presented with respect to a family of n-dimensional signals which are not necessarily band-limited. In the first phase, we present the optimum spacelimited interpolation functions minimizing simultaneously the wide variety of measures of error defined independently in each separate range in the space variable domain, such as 8 8 pixels, for example. Although the quantization of the decimated sample values in each path is contained in this discussion, the resultant interpolation functions possess the optimum property stated above. In the second phase, we will consider the optimum approximation such that no restriction is imposed on the supports of interpolation functions. The Fourier transforms of the interpolation functions can be obtained as the solutions of the finite number of linear equations. For a family of signals not being band-limited, in general, this approximation satisfies beautiful orthogonal relation and minimizes various measures of error simultaneously including many types of measures of error defined in the frequency domain. These results can be extended to the discrete signal processing. In this case, when the rate of the decimation is in the state of critical-sampling or over-sampling and the analysis filters satisfy the condition of paraunitary, the results in the first phase are classified as follows: (1) If the supports of the interpolation functions are narrow and the approximation error necessarily exists, the presented interpolation functions realize the optimum approximation in the first phase. (2) If these supports become wide, in due course, the presented approximation satisfies perfect reconstruction at the given discrete points and realizes the optimum approximation given in the first phase at the intermediate points of the initial discrete points. (3) If the supports become wider, the statements in (2) are still valid but the measure of the approximation error in the first phase at the intermediate points becomes smaller. (4) Finally, those interpolation functions approach to the results in the second phase without destroying the property of perfect reconstruction at the initial discrete points.

  • Radiated Emission Estimation of a Metallic Enclosure Model Source by Inverse-Forward Analysis

    Shose HAYASHI  Koichiro MASUDA  Ken-ichi HATAKEYAMA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    173-180

    For estimating the radiated emission from a metallic enclosure, the authors have developed a numerical computational method which applied inverse analysis. A metallic enclosure containing a loop antenna was set up to be a model source for the numerical analysis. Magnetic fields around the enclosure were measured by measurement systems fabricated in the authors' laboratory. Using the measured magnetic fields, current distributions on the enclosure surface were determined by means of an inverse analysis utilizing the least squares method. From this surface current distribution, the electromagnetic field distributions were estimated by forward analysis on a cylindrical surface 3.0m in radius. The amount of the error in the estimated fields distribution was also discussed.

  • Measurements on Low Frequency Phase and Amplitude Fluctuations and Its Application to Reduce the Noise in Bipolar Transistor Circuits

    Keiji TAKAGI  

     
    LETTER

      Vol:
    E78-B No:2
      Page(s):
    279-280

    A system for measuring the low frequency amplitude and phase noises was set-up, with employing a phase sensitive detector and phase-shifter. It is noted that both noises were partly correlated. The phase noise was explained by the transit time fluctuation due to the fluctuating diffusion coefficient. The amplitude noise reduction was demonstrated by applying the inverted output of the phase noise to the amplitude noise.

  • A Telecommunications Management Integration Network

    Masahiko MATSUSHITA  Tetsuo OKAZAKI  Makoto YOSHIDA  

     
    PAPER

      Vol:
    E78-B No:1
      Page(s):
    17-23

    Telecommunications management activities have mostly been supported by operators; however, machines are gradually playing more important roles in the management arena by utilizing computing technology. Additionally, management systems can now be networked by using standard interface specifications. The study of human and machine integration is thus essential for achieving the sophisticated management objectives of telecommunications. This paper proposes the principles for a telecommunications management integration network (TMIN), which integrates human and machine management networks, and proposes a source text description method for transferring management communication knowledge from human to machine. First, reference models are proposed for the management process and management communication. These models cover network management activities of both humans and machines. Second, the contents of the source text are clarified. Source text presents human management knowledge in a form suitable for machine-machine communication. Third, an efficient source text description method is proposed that reduces redundancy and proliferation. Finally, a means of harmonizing management information definitions with TMIN is suggested to facilitate human-machine cooperation.

  • Polarization Dependence of Soliton Interactions in Femtosecond Soliton Transmission

    Tomoki SUGAWA  Kenji KUROKAWA  Hirokazu KUBOTA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    28-37

    The polarization dependence of femtosecond soliton-soliton interactions is investigated in detail. When the polarization direction of two solitons is orthogonal, the soliton interaction can be reduced in comparison to that for parallel polarization. The soliton self-frequency shift (SSFS) is still observed even in the orthogonal condition, but the quantity of the SSFS is much smaller than in the parallel condition. A stronger soliton interaction is observed between two solitons in an in-phase condition, than in an out-of-phase condition. The largest SSFS occurs in-phase with parallel polarization. The polarization dependence of femtosecond soliton interaction in a distributed erbium-doped fiber amplifier (DEDFA) is also investigated. It is shown that when the optical gain of the DEDFA is given adiabatically, the input pulse separation at which the first soliton occurs is less with orthogonal polarization. This is because the soliton pulse width is reduced due to the adiabatic soliton narrowing caused by the optical amplification.

  • Stable Light-Bullet Formation in a Kerr Medium: A Route to Multidimensional Solitons in the Femtosecond Regime

    Kazuya HAYATA  Hiroyuki HIGAKI  Masanori KOSHIBA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    38-42

    Ultrashort pulsed-beam propagation in a Kerr-type bulk medium is studied theoretically through classical and quantum field solutions of a higher-order nonlinear Schrödinger equation, which is valid for transversely localized femtosecond pulses in an anomalous dispersion regime. Quantum-mechanical stability analysis via a Hartree approximation to interacting bosons shows that within a certain range of a parameter the solitary wave could be stabilized even in the three-dimensional transverse space-time. This feature admits of an exotic route to multidimensional solitons.

  • Light Scattering and Reflection Properties in Polymer Dispersed Liquid Crystal Cells with Memory Effects

    Rumiko YAMAGUCHI  Susumu SATO  

     
    PAPER-Electronic Displays

      Vol:
    E78-C No:1
      Page(s):
    106-110

    Memory type polymer dispersed liquid crystal (PDLC) can be applied to a thermal addressing display device cell. Making use of its easy fabrication of large area display using flexible film substrate, the PDLC film can be used as reusable paper for direct-view mode display. In this study, memory type PDLC cells are prepared with an aluminum reflector deposited onto one side of the substrate and the reflection property in the PDLC cell with the reflector is clarified and compared to that without the reflector in the off-, on- and memory-states. The increase of contrast ratio and the decrease of driving voltage can be concurrently realized by decreasing the cell thickness by attaching the reflector. In addition, the reflected light in the off-state is bright and colorless due to the reflector, as compared with the weak, bluish reflected light in the cell without the reflector. Reflected light in the on-state and the memory-state are tinged with blue.

  • Short Optical Pulse Generation and Modulation by a Multi-Section MQW Modulator/DFB Laser Integrated Light Source

    Koichi WAKITA  Kenji SATO  Isamu KOTAKA  Yasuhiro KONDO  Mitsuo YAMAMOTO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    50-54

    A new device consisting of an optical pulse generation section and pulse coding section monolithically integrated on a single-chip has been developed. The pulse generation section consists of a multiple quantum well (MQW) electroabsorption modulator integrated with an MQW DFB laser. The modulator operates at large-signal modulation and low voltage (from 2 to 3-V DC bias with a 3.2-V peak-to-peak RF signal). The second modulator is operated independently as a pulse encoder. An approximately transform-limited optical pulse train, whose full width at half maximum (FWHM) in the time domain is less than 17-ps and spectral FWHM is 28-GHz, is obtained with a repetition frequency of 10-GHz. Compressive strain is introduced in both InGaAsP quantum wells in order to obtain efficient device characteristics. These include a low threshold current (18-mA) for the laser, and low driving voltage (30-dB for 3-V swing) and high-speed operation (over 12-GHz for a 3-dB bandwidth) for the modulators. Demonstrations show that this new device generates short optical pulses encoded by a pseudo-random signal at a rate of 10 Gbit/s. This is the first time 10 Gbit/s modulation has been achieved with a multi-section electroabsorption modulator/DFB laser integrated light source. This monolithic device is expected to be applied to optical soliton transmitters.

  • High-Speed Modulation with Low-Threshold 1.3µm-Wavelength MQW Laser Diodes

    Kazuhiro TANAKA  Kaoru NAKAJIMA  Tetsufumi ODAGAWA  Hiroyuki NOBUHARA  Kiyohide WAKAO  

     
    LETTER

      Vol:
    E78-C No:1
      Page(s):
    91-93

    Laser diodes for optical interconnections are ideally high speed, work over a wide temperature range, and are simple to bias. This paper reports high bit-rate modulation with nearly zero bias with very low threshold 1.3µm-wavelength laser diodes over a wide temperature range. At the high temperature of 80, lasing delay was 165 ps with nearly zero bias. We demonstrated 2.5 Gbit/s modulation over a wide temperature range. Eye opening was over 34% of one time slot.

  • A Convolutional Coded ARQ Scheme with Retransmission Criterion Based on an Estimated Decoding Error Rate

    Hiroyuki FUJIWARA  Hirosuke YAMAMOTO  Jinqiao REN  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:1
      Page(s):
    100-110

    A new Hybrid-ARQ scheme with a convolutional code and the Viterbi decoding is proposed, which uses the packet combining technique and a retransmission criterion based on an estimated decoding error rate. The throughput and bit error rate are evaluated by theoretical bounds and computer simulations. It is shown that a given error rate tolerance can be attained with good throughput for any signal to noise ratio, i.e. for the slow time-varying channels. Furthermore, the throughput performance can be improved by retransmitting not all but a part of packet.

  • On the Negation-Limited Circuit Complexity of Clique Functions

    Tetsuro NISHINO  Keisuke TANAKA  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E78-D No:1
      Page(s):
    86-89

    A negation-limited circuit is a combinational circuit which includes at most [log(n1)] NOT gates. We show a relationship between the size of negation-limited circuits computing clique functions and the number of NOT gates in the circuits.

  • Moving Target Extraction and Image Coding Based on Motion Information

    Jong-Bae LEE  Seong-Dae KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:1
      Page(s):
    127-130

    This paper describes a method of coding image sequences based on global/local motion information. The suggested method initially estimates global motion parameters and segments a target region from a given image. Then we coded background and target region by assigning more bits to the target region and less bits to background in order to reconstruct the target region with high quality. Simulations show that the suggested algorithm has better result than the existing methods, especially in the circumstances where background changes and target region is small enough compared with that of background.

  • Performance Analysis of Coherent Optical POLSK Receives with Local Oscillator Intensity Noise and Unmatched Quantum Efficiencies

    Hideyuki UEHARA  Tomoaki OHTSUKI  Iwao SASASE  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:12
      Page(s):
    1590-1599

    The sensitivity degradation due to unmatched quantum efficiencies is theoretically investigated for coherent optical POLSK heterodyne, homodyne and balanced receivers with shot noise, thermal noise and LO intensity noise. This analysis is based on the exact expressions of the probability density function (PDF) of the noise process to calculate the bit-error-rate (BER) considering LO intensity noise and unmatched quantum efficiencies. We derive the optimum LO power to minimize the power penalty for POLSK receivers. The theoretical results clarify the relation between the unmatched quantum efficiencies and sensitivity degradation due to the LO intensity noise. Based on this analysis, it is found that the balanced receiver is preferable for the design of POLSK receivers.

  • Phase Noise Evaluation Using the Maximum Time Interval Error and Time Variance for Network Synchronization

    Atsushi IMAOKA  Masami KIHARA  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E77-B No:12
      Page(s):
    1564-1569

    Long term phase noises are characterized for network synchronization using two time domain measurement techniques: the Maximum Time Interval Error (MTIE) and Time Variance (TVAR). First, the characteristics of previously measured fiber delay variations are evaluated. The diurnal and annual delay variations and the long term noise feature of random walk phase modulation are well represented by the TVAR technique. The delay variation due to the AU pointer operation is then measured using commercial SDH demultiplexing equipment and compared with the simulation result; the simulation result agrees well with the experimental result. The delay variation in the SDH equipment is simulated using the thermal fiber delay variation measured in the actual network as the input phase of the equipment. It is shown that the SDH equipment sometimes generates delay steps of 617ns, which are larger than the normal pointer operations of 154ns. The long term delay variation, periods over 107s, due to the threshold spacing between the positive and negative stuffing is described. We also show that TVAR is suitable for evaluating the phase noise feature and MTIE can clearly show the peak value of phase noise. The long term phase noises evaluated in this paper are the dominant sources that degrade network synchronous performance. The results of this paper will be useful in designing the equipment synchronous specification.

  • Analysis of an ATM Multiplexer with Correlated Real-Time and Independent Non-real-time Traffic

    Chung-Ju CHANG  Jia-Ming CHEN  Po-Chou LIN  

     
    PAPER-Communication Networks and Service

      Vol:
    E77-B No:12
      Page(s):
    1521-1529

    This paper presents an alternative traffic model for an ATM multiplexer providing video, voice, image, and data services. The traffic model classifies the input traffic into two types: real-time and non-real-time. The input process for realtime traffic is periodic and correlated, while that for non-realtime traffic is batch Poisson and independent. This multiplexer is assumed to be a priority queueing system with synchronous servers operating on time-frame basis and with separate finite buffers for each type of traffic. State probabilities and performance measures are successfully obtained using a Markov analysis technique and an application of the residue theorem in complex variable. The results can be applied in the design of an ATM multiplexer.

  • Comments on "Resequencing Delay for a Queueing System with Multiple Servers under a Threshold-Type Scheduling"

    Li-Der CHOU  Jean-Lien C. WU  

     
    LETTER-Communication Networks and Service

      Vol:
    E77-B No:12
      Page(s):
    1632-1637

    In their paper[1], Sasase and Mori proposed a method of calculating the resequencing delay for a multiple-server queueing system under a threshold-type scheduling. However, it is found that the result of the proposed method does not converge to the corresponding expression in Ref.[2] for the system with two servers. In this correspondence, we show that the proposed method in Ref.[1] is not correct, and verify it by simulation.

  • A PLL-Based Programmable Clock Generator with 50-to 350-MHz Oscillating Range for Video Signal Processors

    Junichi GOTO  Masakazu YAMASHINA  Toshiaki INOUE  Benjamin S. SHIH  Youichi KOSEKI  Tadahiko HORIUCHI  Nobuhisa HAMATAKE  Kouichi KUMAGAI  Tadayoshi ENOMOTO  Hachiro YAMADA  

     
    PAPER-Processor Interfaces

      Vol:
    E77-C No:12
      Page(s):
    1951-1956

    A programmable clock generator, based on a phase-locked loop (PLL) circuit, has been developed with 0.5 µm CMOS triple-layer Al interconnection technology for use as an on-chip clock generator in a 300-MHz video signal processor. The PLL-based clock generator generates a clock signal whose frequency ranges from 50 to 350 MHz which is an integral multiple, from 2 to 16, of an external clock frequency. In order to achieve stable operation within this wide range, a voltage controlled oscillator (VCO) with selectable low VCO gain characteristics has been developed. Experimental results show that the clock generator generates a 297-MHz clock with a 27-MHz external clock, with jitter of 180 ps and power dissipation of 120 mW at 3.3-V power supply, and it can also oscillate up to 348 MHz with a 31.7-MHz external clock.

  • Design of a 3.2 GHz 50 mW 0.5 µm GaAs PLL-Based Clock Generator with 1 V Power Supply

    Tadayoshi ENOMOTO  Toshiyuki OKUYAMA  

     
    PAPER-Processor Interfaces

      Vol:
    E77-C No:12
      Page(s):
    1957-1965

    A 3.2 GHz, 50 mW, 1 V, GaAs clock pulse generator (CG) based on a phase-locked loop (PLL) circuit has been designed for use as an on-chip clock generator in future high speed processor LSIs. 0.5 µm GaAs MESFET and DCFL circuit technologies have been used for the CG, which consists of 224 MESFETs. An "enhanced charge-up current" inverter has been specially designed for a low power and high speed voltage controlled oscillator (VCO). In this new inverter, a voltage controlled dMESFET is combined in parallel with the load dMESFET of a conventional DCFL inverter. This voltage controlled dMESFET produces an additional charge-up current resulting in the new VCO obtaining a much higher oscillation frequency than that of a ring oscillator produced with a conventional inverter. With a single 1 V power supply (Vdd), SPICE calculation results showed that the VCO tuning range was 2.25 GHz to 3.65 GHz and that the average VCO gain was approximately 1.4 GHz/V in the range of a control voltage (Vc) from 0 to 1 V. Simulation also indicated that at a Vdd of 1 V the CG locked on a 50 MHz external clock and generated a 3.2 GHz internal clock (=50 MHz64). The jitter and power dissipation of the CG at 3.2 GHz oscillation and a Vdd of 1 V were less than 8.75 psec and 50 mW, respectively. The typical lock range was 2.90 GHz to 3.59 GHz which corresponded to a pull-in range of 45.3 MHz to 56.2 MHz.

  • Transmission Characteristics of DQPSK-OFDM for Terrestrial Digital Broadcasting Systems

    Masafumi SAITO  Shigeki MORIYAMA  Shunji NAKAHARA  Kenichi TSUCHIDA  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1451-1460

    OFDM (Orthogonal Frequency Division Multiplexing) is a useful digital modulation method for terrestrial digital broadcasting systems, both for digital TV broadcasting and digital audio broadcasting. OFDM is a kind of multicarrier modulation and shows excellent performance especially in multipath environments and in mobile reception. Other advantages are its resistance to interference signals and its suitability for digital signal processing. When each carrier of the OFDM signal is modulated with DQPSK, we call it DQPSK-OFDM. DQPSK-OFDM is a basic OFDM system, which is especially suitable for mobile reception. This paper describes how a DQPSK-OFDM system works and shows several experimental and simulation results. The experimental results mainly concern the performance of the DQPSK-OFDM system relative to various disturbances such as multipath (ghost) signals, nonlinearity of the channel, and interference from analog signals. The transmission characteristics of DQPSK-OFDM are investigated and the basic criteria for the system design of DQPSK-OFDM are discussed.

6421-6440hit(6809hit)