The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROM(701hit)

601-620hit(701hit)

  • Mobile Applications of Meteor Burst Communications

    Akira FUKUDA  

     
    INVITED PAPER

      Vol:
    E79-A No:7
      Page(s):
    953-960

    This paper is a brief survey of mobile applications of meteor burst communications (MBC). Though the capacity of MBC systems is generally not large, this unique long distance communication method has at least two selling points when applied to mobiles. First of all, it is cheap. Secondly, it can easily offer nationwide seamless service. Thus, since the late 1980s, mobile MBC systems have been attracting interests of the industry. Although MBC is today a well established communication technique, there are some difficulties to be overcome before it is widely applied to mobile systems. Two most serious problems are the rather large antenna size and high transmitter power inherent to this beyond line of sight communication which relies on weak reflections of low VHF (typically 35 to 50 MHz) radio waves from ionized meteor trails. Some reduced sized antennas which can be mounted on the roofs of trucks have been tested. The problem of large peak power (a few hundred watts for mobile remotes) is much alleviated by the very low duty cycle (usually less than 1%) of remote transmitters due to their bursty transmissions responding to the probe signals from the master station via infrequent meteor reflections. In this paper, some land and maritime mobile MBC systems are brieflyintroduced.

  • A Novel Programming Method Using a Reverse Polarity Pulse in Flash EEPROMs

    Hirohisa IIZUKA  Tetsuo ENDOH  Seiichi ARITOME  Riichiro SHIROTA  Fujio MASUOKA  

     
    PAPER-Nonvolatile memories

      Vol:
    E79-C No:6
      Page(s):
    832-835

    The data retention characteristics for Flash EEPROM degrade after a large number of write and erase cycles due to the increase of the tunnel oxide leakage current. This paper proposes a new write/erase method which uses a reverse polarity pulse after each erase pulse. By using this method, the leakage current can be suppressed. As a result, the read disturb time after 105cycles write/erase operation is more than 10 times longer in comparison with that of the conventional method. Moreover, using this method, the endurance cycle dependence of the threshold voltage after write and erase operation is also drastically improved.

  • Adaptive Determination of Maximum Diameter of Rain drops from ZDR

    Yuji OHSAKI  Kenji NAKAMURA  

     
    PAPER

      Vol:
    E79-B No:6
      Page(s):
    793-796

    A maximum diameter (Dmax) of raindrop should be assumed when rainfall rate (R) is estimates from the differential reflectivity (ZDR) and the horizontal reflectivity (ZH) measured with dual-polarization radar. If the assumed Dmax is different from actual Dmax, the estimated R contains errors. Using distrometer data, it was found that ZDR correlates with Dmax, and it was verified that when Dmax is adaptively determined by an empirical relationship between ZDR and Dmax, errors in estimated R can be reduced.

  • Electromagnetic Emissions from Atmospheric Pressure Gas Discharges

    Jen-Shih CHANG  

     
    INVITED PAPER

      Vol:
    E79-B No:4
      Page(s):
    447-456

    Over the past few years, many industrial processes have switched to electrical processes from conventional fossil fuel as a primary energy source, since electricity can be transmitted more economically than the transport of fossil fuels, as well as less pollution problems and labour- and spacesaving nature. For the environmental protections, ozone generation for water treatments, and decomposition of pollution gases such as SOx, NOx, COx, etc., by high pressure gas discharge processes become an important research subject. However, due to the early stage of development, the EMC problem is not yet well considered. In this review, we try to address the EMC problem in the various atmospheric pressure gas discharge processing techniques and identify future needs of research.

  • Sensing Device for In-Line EMI Checker of Small Electric Appliances

    Toshiaki KOIZUMI  Kumio TAKAHASHI  Shun SUZUKI  Hideaki SONE  Yoshiaki NEMOTO  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    509-514

    This paper discusses the design of a small sensing device for EMI measurement which has equivalent characteristics to the absorbing clamp method, and reports the results on evaluation of the device. The device can be applied to the inspection apparatus for products such as power tools to examine conformance to EMI regulations of electromagnetic radiation spectrum. For reducing the scale of the EMI inspection apparatus, new matching circuit being replaced with the absorbing clamp method is adopted in the sensing device. Length of the sensing device is smaller than one twelfth of a wavelength of the measuring frequency in order to regard the sensing device as a concentrated constant circuit. The matching circuit is a resonant circuit which consists of a coaxial coupled transformer and a variable capacitor, and the transformer is a spiral copper tube in which a pair of AC power line wires passes. Resonant frequency of the circuit is tuned to the measuring frequency by adjusting the variable capacitor so that the circuit would terminate the power line by impedance zero. Thus interference current propagating along the power line from a product is absorbed, and observed by means of a VHF current probe which is settled in the matching circuit. A simple circuit for measurement of noise amplitude distribution (NAD) of interference current was developed as well as an equation to estimate quasi-peak value from the NAD. Result of measurement by the sensing device and proposed procedure confirmed good correlation with the standard absorbing clamp method, and deviation was within 3dB. Measurement time was reduced to 25 s per product, and the in-line EMI checker with new sensing device can be employed in a mass production line.

  • Electromagnetic Radiation Noise from Surface Gas Discharges-Mechanisms of Propagation, Coupling and Formation

    Keiichi UCHIMURA  Shuichi NITTA  Jen-Shih CHANG  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    490-496

    Surface discharge is widely used for industrial ozonizers and toxic gas treatments, and is noise source. In this paper, an experimental investigation from the point of view of electromagnetic compatibility (EMC) has been conducted to evaluate the noise characteristics of surface discharge combustion flue gas cleaning systems. Mechanisms of propagation, coupling and formation are proposed based on the experimental observations.

  • A Time-Domain Filtering Scheme for the Modified Root-MUSIC Algorithm

    Hiroyoshi YAMADA  Yoshio YAMAGUCHI  Masakazu SENGOKU  

     
    PAPER-Antennas and Propagation

      Vol:
    E79-B No:4
      Page(s):
    595-601

    A new superresolution technique is proposed for high-resolution estimation of the scattering analysis. For complicated multipath propagation environment, it is not enough to estimate only the delay-times of the signals. Some other information should be required to identify the signal path. The proposed method can estimate the frequency characteristic of each signal in addition to its delay-time. One method called modified (Root) MUSIC algorithm is known as a technique that can treat both of the parameters (frequency characteristic and delay-time). However, the method is based on some approximations in the signal decorrelation, that sometimes make problems. Therefore, further modification should be needed to apply the method to the complicated scattering analysis. In this paper, we propose to apply a time-domain null filtering scheme to reduce some of the dominant signal components. It can be shown by a simple experiment that the new technique can enhance estimation accuracy of the frequency characteristic in the Root-MUSIC algorithm.

  • Coupling of a Transient Near Field to a Transmission Line

    Yoshio KAMI  Masafumi KIMURA  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    497-502

    The coupling response of an external transient electromagnetic field to a transmission line is considered. An experiment has been conducted to verify the line equations for a transmission line excited externally by a transient near field. The model field is generated by a monopole antenna installed in the vicinity of the transmission line and driven by a step waveform. The waveform is analyzed into discrete spectrum components using a Fourier transform. The frequency-domain field components affecting the transmission line are estimated by the moment method, and then the induced frequency-domain voltage at the terminal load is converted into a time-domain voltage using an inverse Fourier transform. Comparison between the measured and the computed values provides verification of the line equations. The coupling mechanism is discussed from the experimental results. It seems equivalently that the transmission line picks up the field, generated at the feed point and the top point of the monopole antenna, at both terminal ends.

  • Near Fields Radiated from a Long Slot on a Circular Conducting Cylinder

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E79-C No:2
      Page(s):
    249-251

    New series expressing the radiation fields from both axial and circumferential slots on a circular conducting cylinder are derived. These new series converge rapidly even for near fields. This letter includes useful figures showing characteristics of near fields calculated numerically using the new series.

  • TM-Scattering from Notches in a Parallel-Plate Waveguide

    Kyung H. PARK  Hyo J. EOM  Kazunori UCHIDA  

     
    LETTER-Communication Cable and Wave Guides

      Vol:
    E79-B No:2
      Page(s):
    202-204

    The problem of TM-mode scattering from the finite number of rectangular notches in a parallel plate waveguide is considered. The Fourier-transform is employed to obtain simultaneous equations and the simultaneous equations are solved to obtain an analytic solution in rapidly-convergent series. Numerical computations are performed to investigate the scattering behavior in terms of frequency and notch sizes. The presented theory is applicable to the analysis of scattering from the E-plane stubs in the rectangular waveguide.

  • A Structured Walking-1 Approach for the Diagnosis of Interconnects and FPICs*

    Tong LIU  Fabrizio LOMBARDI  Susumu HORIGUCHI  Jung Hwan KIM  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E79-D No:1
      Page(s):
    29-40

    This paper presents a generalized new approach for testing interconnects (for boundary scan architectures) as well as field programmable interconnect chips (FPICs). This approach relies on a structured walking-1 test set in the sense that a structural analysis based on the layout of the interconnect system, is carried out. The proposed structural test method differs from previous approaches as it explicitly avoids aliasing and confounding and is applicable to dense as well as sparse layouts and in the presence of faults in the programmable devices of a FPIC. The proposed method is applicable to both one-step and two-step test generation and diagnosis. Two algorithms with an execution complexity of O(n2), where n is the number of nets in the interconnect, are given. New criteria for test vector compaction are proposed; a greedy condition is exploited to compact test vectors for one-step and two-step diagnosis. For a given interconnect, the two-step diagnosis algorithm requires a number of tests as a function of the number of faults present, while the one-step algorithm requires a fixed number of tests. Simulation results for benchmark and randomly generated layouts show a substantial reduction in the number of tests using the proposed approaches compared with previous approaches. The applicability of the proposed approach to FPICs as manufactured by [1] is discussed and evaluated by simulation.

  • Quantitative Evaluation of TMJ Sound by Frequency Analysis

    Hiroshi SHIGA  Yoshinori KOBAYASHI  

     
    LETTER

      Vol:
    E78-A No:12
      Page(s):
    1683-1688

    In order to evaluate quantitatively TMJ sound, TMJ sound in normal subject group, CMD patient group A with palpable sounds unknown to them, CMD patient group B with palpable sounds known to them, and CMD patient group C with audible sounds were detected by a contact microphone, and frequency analysis of the power spectra was performed. The power spectra of TMJ sound of normal subject group and patient group A showed patterns with frequency values below 100 Hz, whereas the power spectra of patient groups B and C showed distinctively different patterns with peaks of frequency component exceeding 100 Hz. As regards the cumulative frequency value, the patterns for each group clearly differed from those of other groups; in particular the 80% cumulative frequency value showed the greatest difference. From these results, it is assumed that the 80% cumulative frequency value can be used as an effective indicator for quantitative evaluation of TMJ sound.

  • ILAS, the Improved Limb Atmospheric Spectrometer, on the Advanced Earth Observing Satellite

    Makoto SUZUKI  Akiyoshi MATSUZAKI  Takeo ISHIGAKI  Norio KIMURA  Nobuhiro ARAKI  Tatsuya YOKOTA  Yasuhiro SASANO  

     
    INVITED PAPER

      Vol:
    E78-B No:12
      Page(s):
    1560-1570

    Overview of Improved Limb Atmospheric Spectrometer (ILAS) instrument design, band selection studies, and operation plan is described. The ILAS is a solar occultation instrument onboard ADEOS spacecraft with two grating spectrometers: one is for measurement for O3, HNO3, NO2, N2O, H2O, CH4 CFC11 and CFC12 in the infrared band (850-1610cm-1, 11.76µm-6.21m), and another is for aerosols, temperature and air density measurement in the visible band (753-784nm, O2 atmospheric A band). The ILAS will observe the ozone layer over high-latitudes (N55-70, S63-87) regions with a high vertical resolution (2km) for a period of 3 years after launch in 1996.

  • Structure and Motion of 3D Moving Objects from Multi-Views

    Takeaki Y. MORI  Satoshi SUZUKI  Takayuki YASUNO  

     
    PAPER

      Vol:
    E78-D No:12
      Page(s):
    1598-1606

    This paper proposes a new method that can robustly recover 3D structure and 3D motion of 3D moving objects from a few multi-views. It recovers 3D feature points by obtaining intersections of back-projection lines which are connected from the camera's optical centers thorough projected feature points on the image planes corresponding to the different cameras. We show that our method needs only six views to suppress false 3D feature points in most cases by discussing the relation between the occurrence probability of false 3D feature points and the number of views. This discussion gives us a criterion to design the optimal multi-camera system for recovering 3D structure and 3D motion of 3D moving objects. An experimental multi-camera system is constructed to confirm the validity of our method. This system can take images from six different views at once and record motion image sequence from each view over a period of a few seconds. It is tested successfully on recovering the 3D structure of Vinus's plaster head and on recovering the 3D structure and 3D motion of a moving hand.

  • Micromagnetic Simulation of Recording Media and Magnetoresistive Heads

    Kazuetsu YOSHIDA  Yasutaro UESAKA  Kazuhisa FUJIMOTO  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1509-1516

    A three-dimensional micromagnetic simulation using the Landau-Lifshitz-Gilbert equation was performed for thin-film magnetic recording media and magnetoresistive (MR) heads with soft adjacent layers (SAL). For recording media the simulation results for magnetization curves and media noise were compared with the results of experiments. Although the media model needs to be improved, the qualitative agreement between simulation results and experimental results shows that this micromagnetic simulation can be a useful tool for analyzing and predicting magnetic properties and recording characteristics. This work also showed that media noise is influenced by magnetostatic interaction, and that the decrease of the magnetostatic interaction is favorable for obtaining a high signal-to-noise ratio. For an MR head the output obtained with a nonuniform sense current distribution is similar to the output obtained with uniform sense current distribution for both low and high anisotropy fields (Hk=2 Oe and 10 Oe) SAL. With the low Hk SAL, however, the asymmetry of the output obtained for nonuniform sense current differs from the asymmetry obtained for uniform sense current; the difference is due to a magnetization vortex in a biased state in the SAL. With the high Hk SAL, the difference between the asymmetry obtained for nonuniform sense current and the one obtained for uniform sense current is not large; no vortices are found in the SAL at the biased state.

  • Automatic Transistor-Level Performance Fault Tracing by Successive Circuit Extraction from CAD Layout Data for VLSI in the CAD-Linked EB Test System

    Katsuyoshi MIURA  Koji NAKAMAE  hiromu FUJIOKA  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:11
      Page(s):
    1607-1617

    An automatic transistor-level performance fault tracing method is proposed which is applicable to the case where only CAD layout data is available in the CAD-linked electron beam test system. The technique uses an integrated algorithm that combines a previously proposed transistor-level fault tracing algorithm and a successive circuit extraction from CAD layout data. An expansion of the algorithm to the fault tracing in a combined focused ion beam and electron beam test system which enables us to measure signals on the interconnections in the lower layers is also described. An application of the technique to a CMOS model layout with about 100 transistors shows its validity.

  • Scattering of Electromagnetic Wave by Double Periodic Array with a Dielectric Substrate

    Hideaki WAKABAYASHI  Masanobu KOMINAMI  Jiro YAMAKITA  

     
    LETTER

      Vol:
    E78-A No:11
      Page(s):
    1545-1547

    In this paper, electromagnetic scattering by infinite double two-dimensional periodic array of resistive upper and lower elements is considered. The electric field equations are solved by using the moment method in the spectral domain. Some numerical results are shown and frequency selective properties are discussed.

  • Numerical Analysis of Dielectric Rod Waveguide with Corrugation of Nonintegral-Ratio Period Waves

    Hiroshi KUBO  Kimihisa FUKUSHIMA  Ikuo AWAI  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1402-1408

    The dielectric rod waveguides with corrugation consisting of nonintegral-ratio period waves are investigated numerically. The leakage characteristics of HE11-type wave in the waveguide is analyzed by applying Yasuura's method. The complex propagation constants and the far field patterns are presented. The radiation pattern of a fabricated waveguide with corrugation agrees well with the calculated value. The dependence of radiation characteristics on the corrugation form is discussed. It is shown that the leakage directions and the intensity of leaky waves are controlled independently one another. The radiation pattern can be synthesized by choosing the geometric parameters of the corrugation properly.

  • Diffraction Characteristics of a Finite Metal-Strip Grating Integrated with a Planar Dielectric Waveguide

    Victor I. KALINICHEV  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1447-1452

    The radiation and scattering characteristics of a metal-strip grating of finite extent printed on the surface of a dielectric waveguide are analyzed within a two-dimensional model. The diffraction properties are obtained from a solution to the problem of surface mode scattering by a finite number of metal strips, taking into account their mutual couplings. The analysis is based on the electromotive force technique which does not require a grating to be periodic. Obtained results concern the antenna applications of radiating gratings excited by the dominant TE or TM surface mode of the wavegude. The proposed approach can be applied not only to the design of radiators but also filters based on periodic strip gratings.

  • Principles of Radar Polarimetry

    Ernst LÜNEBURG  

     
    INVITED PAPER

      Vol:
    E78-C No:10
      Page(s):
    1339-1345

    Research in radar polarimetry is hampered by shortcomings of the conventional formulation of polarimetric backscatter concepts. In particular the correct form of the Sinclair backscatter matrix under changes of polarization bases is derived from the antenna voltage (energy transfer) equation yielding the erroneous impression that radar polarimetry is a mongrel between scattering behavior and network performance. The present contribution restores logical consistency in a natural way by introducing the concept of an antilinear backscatter operator. This approach decouples scattering process and network performance, illuminates matrix analytical properties of the radar backscatter matrix and highlights characteristic states of polarization.

601-620hit(701hit)