The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROS(1068hit)

561-580hit(1068hit)

  • A Compact C-CMRC Feeding Open-Loop Resonator for Harmonic Rejection Bandpass Filter

    Jianzhong GU  Xiaowei SUN  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:9
      Page(s):
    1365-1367

    A compact open-loop resonator bandpass filter is presented to suppress the spurious passband using compensated compact microstrip resonant cell (C-CMRC) feeding structure. Based on the inherently compact and stopband characteristics of the C-CMRC feeding, the proposed filters shows a better spurious rejection performance than the only open-loop resonator filter. The suppression is -57.4 dB, -49.5 dB, and -43.9 dB at the 2nd, 3rd and 4th harmonic signal separately. All the performance of proposed filters have been verified by the measured results.

  • Left-Handed Transmission Characteristics of Ferrite Microstrip Lines without Series Capacitive Loading

    Tetsuya UEDA  Makoto TSUTSUMI  

     
    PAPER

      Vol:
    E89-C No:9
      Page(s):
    1318-1323

    A nonreciprocal left-handed transmission line is proposed and investigated, which is composed of a normally magnetized ferrite microstrip line periodically loaded with inductive stubs but without capacitive loading. The circuit configuration becomes simpler than that of a nonreciprocal left-handed transmission line with both shunt inductive and series capacitive loadings. In the proposed structure, ferrite medium is employed as the substrate not only for the nonreciprocal characteristics but also for negative effective permeability that is essential to establish the left-handedness. After calculations of dispersion curves using equivalent circuit model, scattering parameters along with field patterns are estimated numerically with the help of electromagnetic simulation, and the experiments are also carried out. It is found that the band width of the proposed left-handed transmission line is relatively narrow but the structure still has the high isolation ratio of more than 30 dB.

  • Texture Classification for Liver Tissues from Ultrasonic B-Scan Images Using Testified PNN

    Yan SUN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Pattern Recognition

      Vol:
    E89-D No:8
      Page(s):
    2420-2428

    Visual criteria for diagnosing liver diseases, such as cirrhosis, from ultrasound images can be assisted by computerized texture classification. This paper proposes a system applying a PNN (Pyramid Neural Network) for classifying the hepatic parenchymal diseases in ultrasonic B-scan texture. In this study, we propose a multifractal-dimensions method to select the patterns for the training set and the validation sets. A modified box-counting algorithm is used to calculate the dimensions of the B-scan images. FDWT (Fast Discrete Wavelet Transform) is applied for feature extraction during the preprocessing. The structure of the proposed neural network is testified by training and validation sets by cross-validation method. The performance of the proposed system and a system based on the conventional multilayer network architecture is compared. The results show that, compared with the conventional 3-layer neural network, the performance of the proposed pyramid neural network is improved by efficiently utilizing the lower layer of the neural network.

  • A Visual Inspection System Based on Trinarized Broad-Edge and Gray-Scale Hybrid Matching

    Haruhisa OKUDA  Manabu HASHIMOTO  Miwako HIROOKA  Kazuhiko SUMI  

     
    PAPER-Image Inspection

      Vol:
    E89-D No:7
      Page(s):
    2068-2075

    In the field of industrial manufacturing, visual pattern inspection is an important task to prevent the inclusion of incorrect parts. There have been demands for such methods able to handle factors caused by positional and rotational alignment, and illumination changes. In this paper, we propose a discrimination method called Trinarized broad-edge and Gray-scale Hybrid Matching (TGHM). The method is highly reliable due to gray-scale cross correlation which has a high pattern discrimination efficiency, with high-speed position and rotation alignment using the characteristics of trinarized broad-edge representation which has high data compressibility and illumination-resistant variability. In an example in which the method is applied to mis-collation inspection equipment of a bookbinding machine, it is confirmed that the processing speed is 24,000 sheets/hour, the error detection rate is 100.0%, and the mis-alarm rate is less than 0.002%, and it is verified that the method is practical.

  • Future of Heterostructure Microelectronics and Roles of Materials Research for Its Progress

    Hideki HASEGAWA  Seiya KASAI  Taketomo SATO  Tamotsu HASHIZUME  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    874-882

    With advent of the ubiquitous network era and due to recent progress of III-V nanotechnology, the present III-V heterostructure microelectronics will turn into what one might call III-V heterostructure nanoelectronics, and may open up a new future in much wider application areas than today, combining information technology, nanotechnology and biotechnology. Instead of the traditional top-down approach, new III-V heterostructure nanoelectronics will be formed on nanostructure networks formed by combination of top-down and bottom-up approaches. In addition to communication devices, emerging devices include high speed digital LSIs, various sensors, various smart-chips, quantum LSIs and quantum computation devices covering varieties of application areas. Ultra-low power quantum LSIs may become brains of smart chips and other nano-space systems. Achievements of new functions and higher performances and their on chip integration are key issues. Key processing issue remains to be understanding and control of nanostructure surfaces and interfaces in atomic scale.

  • Plasma Instability and Terahertz Generation in HEMTs Due to Electron Transit-Time Effect

    Victor RYZHII  Akira SATOU  Michael S. SHUR  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    1012-1019

    We study the coupled spatio-temporal variations of the electron density and the electric field (electron plasma oscillations) in high-electron mobility transistors using the developed device model. The excitation of electron plasma oscillations in the terahertz range of frequencies might lead to the emission of terahertz radiation. In the framework of the model developed, we calculate the resonant plasma frequencies and find the conditions for the plasma oscillations self-excitation (plasma instability) We show that the transit-time effect in the high-electric field region near the drain edge of the channel of high-electron mobility transistors can cause the self-excitation of the plasma oscillations. It is shown that the self-excitation of plasma oscillations is possible when the ratio of the electron velocity in the high field region, ud, and the gate length, Lg, i.e., the inverse transit time are sufficiently large in comparison with the electron collision frequency in the gated channel, ν. The transit-time mechanism of plasma instability under consideration can superimpose on the Dyakonov-Shur mechanism predicted previously strongly affecting the conditions of the instability and, hence, terahertz emission. The instability mechanism under consideration might shed light on the origin of terahertz emission from high electron mobility transistors observed in recent experiments.

  • Outage Capacity Analysis of MIMO Macro-Selection Systems

    Wun-Cheol JEONG  Dongfang LIU  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1916-1917

    Multiple-input multiple-output (MIMO) systems applying macroscopic selection diversity (MSD) are analyzed in composite fading channels through derived expressions of capacity outage probability. The MSD system uses a maximum capacity MIMO base station (BS) selection algorithm, where the results show a significant improvement in outage capacity.

  • A Microstrip Phase Shifter Design Using a Switch-Loaded Ground Plate

    Dowon KIM  Moonil KIM  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E89-B No:6
      Page(s):
    1873-1875

    A microstrip phase shifter design that uses a reconfigurable metal pattern on the EBG ground plate is introduced. The EBG ground plate metal pattern contains a linear array of thin slots with switching devices loaded at the center. This design can vary the phase constant with minimum mismatch loss over a large frequency bandwidth. Several test ground plates without actual switching devices were used to verify the design concept.

  • Performance Evaluation and Experiment of a Configuration Algorithm for Three-Stage Multi-Granularity Optical Cross-Connects

    Yongmin QI  Wei GUO  Yi ZHANG  Siye ZUO  Yaohui JIN  Weisheng HU  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:6
      Page(s):
    1747-1754

    We study the configuration issue of three-stage multi-granularity optical cross-connects (MG-OXC) for the dynamic traffic model in all-optical networks. From the single node point of view, we propose a configuration algorithm to configure different granularity cross-connects for arrival sub-requests with different traffic types and bandwidths. The performance of the configuration algorithm is evaluated by simulation and, furthermore, is validated by experiment based on our flexible Multi-functional Optical Switching Testbed (MOST).

  • A Compact Broadband Antenna with an L-Shaped Notch

    Jihak JUNG  Wooyoung CHOI  Jaehoon CHOI  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:6
      Page(s):
    1968-1971

    A small microstrip-fed monopole antenna using an L-shaped notch is presented for ultra wideband applications. The proposed antenna, with compact size of 15.521 mm2 including the ground plane, is designed to operate over the frequency band between 3.05 and 10.9 GHz for S11 < -10 dB. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest.

  • An On-Chip Multi-Channel Rail-to-Rail Signal Monitoring Technique for Sub-100-nm Digital Signal Integrity

    Koichiro NOGUCHI  Makoto NAGATA  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    761-768

    A compact on-chip signal monitor circuit uses voltage mode sensing by a source follower circuit with small input device geometry, followed by a current-mode sample and a hold circuit that is connected to a shared current output bus. A prototype signal monitor circuit demonstrated a 1.1-GHz effective bandwidth for 1.0-V full-swing digital signals in a 90-nm CMOS technology, where the monitor used 2.5-V I/O CMOS transistors and occupied a 30 µm120 µm silicon area. We also showed that such signal monitor circuits can be tailored to sense of power-supply, ground, as well as full-swing logic signal wirings, and form an array with a single current output. Therefore, an on-chip multi-channel signal monitor enables multiple-points as well as multiple-voltage domain waveform acquisition for the purpose of the in-depth study of digital signal integrity.

  • Multi-Stage, Multi-Way Microstrip Power Dividers with Broadband Properties

    Mitsuyoshi KISHIHARA  Isao OHTA  Kuniyoshi YAMANE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:5
      Page(s):
    622-629

    This paper presents a design method of multi-stage, multi-way microstrip power dividers with the aim of constructing a compact low-loss power divider with numbers of outputs. First, an integration design technique of power dividers composed of multi-step, multi-furcation and mitered bends is described. Since the analytical technique is founded on the planar circuit approach combined with the segmentation method, the optimization of the circuit patterns can be performed in a reasonable short computation time. Next, the present method is applied to the design of broadband Nn-way power dividers such as 32-way power divider consisting of 3-way dividers in two-stage structures, respectively. In addition, a 12-way power divider constructed from a series connection of a 3-way and three 4-way dividers is designed. The dividers equivalently contain a 3-section Chebyshev transformer to realize broadband properties. As a result, the fractional bandwidths of nearly 85% and 66.7% for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB are obtained for the 9- and 12-way power dividers, respectively. The validity of these design results is confirmed by a commercial em-simulator (Ansoft HFSS) and experiments.

  • Round-Robin Selection with Adaptable Frame-Size for Combined Input-Crosspoint Buffered Packet Switches

    Roberto ROJAS-CESSA  Zhen GUO  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:5
      Page(s):
    1495-1504

    Combined input-crosspoint buffered (CICB) switches relax arbitration timing and provide high-performance switching for packet switches with high-speed ports. It has been shown that these switches, with one-cell crosspoint buffer and round-robin arbitration at input and output ports, provide 100% throughput under uniform traffic. However, under admissible traffic patterns with nonuniform distributions, only weight-based selection schemes are reported to provide high throughput. This paper proposes a round-robin based arbitration scheme for a CICB packet switch that provides 100% throughput for several admissible traffic patterns, including those with uniform and nonuniform distributions, using one-cell crosspoint buffers and no speedup. The presented scheme uses adaptable-size frames, where the frame size is determined by the traffic load.

  • A Probe-Fed U-Shaped Cross-Sectional Antenna with Tuning Stubs on a U-Shaped Ground Plane

    Duang-arthit SRIMOON  Chuwong PHONGCHAROENPANICH  Monai KRAIRIKSH  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1636-1645

    A probe-fed U-shaped cross-sectional antenna with tuning stubs on a U-shaped ground plane is proposed for wideband applications. The bottom of the antenna is etched to form tuning stubs for impedance matching. The simulated results of return loss, co- and cross-polarized patterns are presented and compared with the measured ones. Characteristics of a constructed antenna prototype at the operating frequency show that the antenna has an impedance bandwidth (2:1 VSWR) of 37.44% and average gain level of 8.5 dBi. Good radiation characteristics of the proposed antenna have been obtained that is the cross-polarization level and front-to-back ratio in both E- and H-planes across the large bandwidth are better than 22 dB and 12 dB, respectively.

  • Topological Book Embedding of Bipartite Graphs

    Miki MIYAUCHI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1223-1226

    A topological book embedding of a graph is an embedding in a book that carries the vertices in the spine of the book and the edges in the pages so that edges are allowed to cross the spine. Recently, the author has shown that for an arbitrary graph G with n vertices there exists a d+1-page book embedding of G in which each edge crosses the spine logd n times. This paper improves the result for the case of bipartite graphs and shows that there exists a d+1-page book embedding of a bipartite graph Gn1,n2 having two partite sets with n1 and n2 vertices respectively (n1 ≥ n2) in which each edge crosses the spine logd n2 -1 times.

  • Dual-Mode Bandpass Filters Using Microstrip Slotted Equilateral Triangular Patch Resonators

    Weiliang HU  Zhewang MA  Yoshio KOBAYASHI  Tetsuo ANADA  Gen HAGIWARA  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    503-508

    Two compact and low loss dual-mode filters are proposed by using degenerate modes of slotted triangular microstrip patch resonators. The geometrical size and radiation loss of the triangular patch are reduced simultaneously by loading both horizontal and vertical slots. The resonant frequencies of two degenerate modes can be easily controlled by varying the dimensions and positions of the slots. A two-pole dual-mode filter operating at 3.94 GHz with a fractional bandwidth of 4.3% is designed, fabricated, and measured. The measured results verify well the theoretical predictions.

  • Synthesizing Microstrip Dual-Band Bandpass Filters Using Frequency Transformation and Circuit Conversion Technique

    Xuehui GUAN  Zhewang MA  Peng CAI  Yoshio KOBAYASHI  Tetsuo ANADA  Gen HAGIWARA  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    495-502

    A novel method is proposed to synthesize dual-band bandpass filters (BPFs) from a prototype lowpass filter. By implementing successive frequency transformations and circuit conversions, a new filter topology is obtained which consists of only admittance inverters and series or shunt resonators, and is thereby easy to be realized by using conventional distributed elements. A microstrip dual-band BPF with central frequencies of 1.8 GHz and 2.4 GHz is designed and fabricated using microstrip lines and stubs. The simulated and measured results show a good agreement and validate thereby the proposed theory.

  • Circularly Polarized Rounded-Off Triangular Microstrip Line Array Antenna

    David DELAUNE  Josaphat Tetuko SRI SUMANTYO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1372-1381

    The Japan Aerospace Exploration Agency (JAXA) plans to launch a geostationary satellite called Engineering Test Satellite VIII (ETS-VIII) in FY 2006. In this paper, a microstrip line array antenna, which has a very simple structure, is introduced to radiate a circularly polarized wave aiming at ETS-VIII applications. This antenna consists of a triangular conducting line with its vertexes rounded off, located above a ground plane, with a gap on one of its side to produce a circular polarization. The proposed antenna is analyzed by numerical simulations for a single element as well as for a three elements array configuration and the possibility of beam-switching in the azimuth space is experimentally confirmed in the latter case. It is found that by properly feeding the elements constituting the array antenna, for an elevation angle El = 48in Tokyo area, three beams are created in the conical-cut direction with a minimum gain more than 6.6 dBic and an axial ratio less than 3 dB.

  • An Adaptive Frame-Based Interpolation Method of Channel Estimation for Space-Time Block Codes in Moderate Fading Channels

    Gabriel Porto VILLARDI  Giuseppe Thadeu Freitas de ABREU  Ryuji KOHNO  

     
    PAPER-Communications

      Vol:
    E89-A No:3
      Page(s):
    660-669

    The application of Orthogonal Space-Time Block Codes (O-STBC) as the encoding scheme in the presence of "non-quasi-static" fading was considered. A simple and efficient adaptive method of channel estimation based on the interpolation of estimates acquired at the pre-amble and post-amble of framed blocks of information is developed. Moreover, the proposed method is proven, both theoretically and by simulations, to outperform the alternative of channel tracking, despite its significant low complexity.

  • Extraction of LRGC Matrices for 8-Coupled Uniform Lossy Transmission Lines Using 2-Port VNA Measurements

    Hyun Bae LEE  Kyoungho LEE  Hae Kang JUNG  Hong June PARK  

     
    PAPER-Electronic Components

      Vol:
    E89-C No:3
      Page(s):
    410-419

    The electrical parameters (88 LRGC matrices) of 8-coupled uniform lossy transmission lines were extracted from 40 S-parameter values measured by using 2-port VNA measurements, where all the ports other than 2 VNA ports were terminated by 50 ohm chip resistors. It was assumed in the extraction step that the transmission lines are weakly-coupled, and that the resistance values of all the termination chip resistors are exactly 50 ohms with the second reflections neglected. Comparison of the extracted LRGC matrix components with those from a commercial 3D field solver revealed on average and a maximum relative difference of 2.45% and 7.66%, respectively. In addition, the time-domain crosstalk voltage waveforms in the measured data and those in the SPICE simulation results using the extracted LRGC parameters agreed very well with the average difference and the maximum relative difference in peak crosstalk voltages of 4.15% and 9.68%, respectively.

561-580hit(1068hit)