The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROS(1068hit)

421-440hit(1068hit)

  • Inter-Cell Resource Coordination Utilizing Macroscopic Diversity for an Uplink OFDMA System

    Sungjin LEE  Sanghoon LEE  Gyetae GIL  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3256-3259

    An ICI (Inter-Cell Interference) mitigation algorithm for exploiting macroscopic diversity for an up-link OFDMA (Orthogonal Frequency Division Multiple Access) system is proposed. To reduce the influence of carrier collision, the order of resource allocation is coordinated based on the location of each MS (Mobile Station) and the associated carrier group. This consideration significantly reduces ICI and enhances throughput at the boundary region.

  • Performance Improvement of Proportional Fairness-Based Resource Allocation in OFDMA Downlink Systems

    Nararat RUANGCHAIJATUPON  Yusheng JI  

     
    PAPER-Broadband Wireless Access System

      Vol:
    E92-A No:9
      Page(s):
    2191-2199

    We have developed a novel downlink packet scheduling scheme for a multiuser OFDMA system in which a subchannel can be time-multiplexed among multiple users. This scheme which is called Matrixed-based Proportional Fairness can provide a high system throughput while ensuring fairness. The scheme is based on a Proportional Fairness (PF) utility function and can be applied to any of the PF-based schedulers. Our scheduler explores multichannel multiuser diversity by using a two-dimensional matrix combining user selection, subchannel assignment, and time slot allocation. Furthermore, unlike other PF-based schemes, our scheme considers finitely backlogged queues during the time slot allocation. By doing so, it can exploit multichannel multiuser diversity to utilize bandwidth efficiently and with throughput fairness. Additionally, fairness in the time domain is enhanced by limiting the number of allocated time slots. Intensive simulations considering finitely backlogged queues and user mobility prove the scheme's effectiveness.

  • SCTPmx: An SCTP Fast Handover Mechanism Using a Single Interface Based on a Cross-Layer Architecture

    Yunsop HAN  Fumio TERAOKA  

     
    PAPER-Network

      Vol:
    E92-B No:9
      Page(s):
    2864-2873

    Recently, SCTP is attracting attention to support mobility in the Internet because it does not require additional equipment such as the Home Agent of Mobile IP. This paper focuses on an SCTP fast handover mechanism using a single interface because it is assumed that small mobile devices have a single interface per communication medium such as IEEE802.11b due to hardware limitations. The proposed mechanism called SCTPmx employs a cross layer control information exchange system called LIES to predict handover. LIES was originally designed to achieve network layer fast handover and then it was extended by adding the network layer primitives for efficient interaction among the link layer, the network layer, and the transport layer. Prior to handover, SCTPmx can generate a new address that will be used after handover and can execute duplicate address detection of IPv6. SCTPmx can suppress the delay caused by channel scanning at the link layer by employing selective background scanning mechanism which allows to continue data communication during channel scanning. In addition, SCTPmx can notify the correspondent node of the new address before handover. SCTPmx was implemented on FreeBSD. SCTPmx achieved better than 25 times lower handover latency (100 msec) and 2 times higher throughput than previous proposals.

  • Design of SCR-Based ESD Protection Device for Power Clamp Using Deep-Submicron CMOS Technology

    Yongseo KOO  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1188-1193

    The novel SCR-based (silicon controlled rectifier) device for ESD power clamp is presented in this paper. The proposed device has a high holding voltage and a high triggering current characteristic. These characteristics enable latch-up immune normal operation as well as superior full chip ESD protection. The device has a small area in requirement robustness in comparison to ggNMOS (gate grounded NMOS). The proposed ESD protection device is designed in 0.25 µm and 0.5 µm CMOS Technology. In the experimental result, the proposed ESD clamp has a double trigger characteristic, a high holding voltage of 4 V and a high trigger current of above 350 mA. The robustness has measured to HBM 8 kV (HBM: Human Body Model) and MM 400 V (MM: Machine Model). The proposed device has a high level It2 of 52 mA/ µm approximately.

  • Robust Channel Order Selection Based on Spectral Matching

    Koji HARADA  Hideaki SAKAI  

     
    PAPER-Communications

      Vol:
    E92-A No:8
      Page(s):
    1898-1904

    In this paper, a new approach to channel order selection of single-input multiple-output (SIMO), finite impulse response (FIR) channels is proposed for blind channel estimation. The approach utilizes cross spectral density (CSD) of the channel outputs, and minimizes the distance between two CSD's, one calculated non-parametrically from the observed output data, and the other calculated from the blindly estimated channel parameters. The CSD criterion is numerically tested on randomly generated SIMO-FIR channels, and shown to be very effective compared to existing channel order selection methods especially under low SNR settings. Blind estimates of the channels with the selected channel order also show superiority of the CSD criterion.

  • Network-Adaptive Video Streaming over Wireless Multi-Hop Networks: Cross-Layered Hop-by-Hop Control

    SangHoon PARK  Jaeyong YOO  JongWon KIM  

     
    LETTER-Network

      Vol:
    E92-B No:7
      Page(s):
    2496-2499

    In this letter, we propose a network-adaptive video streaming scheme based on cross-layered hop-by-hop video rate control in wireless multi-hop networks. We argue that existing end-to-end network-adaptive video rate control schemes, which utilize end-to-end statistics, exhibit serious performance degradation in severely interfered wireless network condition. To cope with this problem, in the proposed scheme, intermediate wireless nodes adjust video sending rate depending upon wireless channel condition measured at MAC (Medium Access Control) layer. Extensive experimental results from an IEEE 802.11a-based testbed show that the proposed scheme improves the perceptual video quality compared to an end-to-end scheme.

  • Analytical Solution for Two Parallel Traces on PCB in the Time Domain with Application to Hairpin Delay Lines

    Fengchao XIAO  Kimitoshi MURANO  Yoshio KAMI  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1953-1959

    In this paper the time-domain analysis of two parallel traces is investigated. First, the telegrapher's equations for transmission line are applied to the parallel traces on printed circuit board (PCB), and are solved by using the mode decomposition technique. The time-domain solutions are then obtained by using the inverse Laplace transform. Although the Fourier-transform technique is also applicable for this problem, the solution is given numerically. Contrarily, the inverse Laplace transform successfully leads to an analytical expression for the transmission characteristics. The analytical expression is represented by series, which clearly explains the coupling mechanism. The analytical expression for the fundamental section of a meander delay line is investigated in detail. The analytical solution is validated by measurements, and the characteristics of the distortions in the output waveforms of meander delay lines due to the crosstalk are also investigated.

  • Crosstalk Analysis for Embedded-Line Structure at PCB Using Circuit-Concept Approach

    Sang-Wook PARK  Fengchao XIAO  Yoshio KAMI  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1945-1952

    An analytical method for estimating coupling between microstrip lines in arbitrary directions on adjacent layers in multi-layer printed circuit boards is studied: one line is embedded and the other is on the surface layer. Coupling or crosstalk has been estimated by development of a circuit-concept approach based on modified telegrapher's equations of the Agrawal approach instead of the Taylor approach for some computational advantages. Electromagnetic fields from the embedded microstrip line and the microstrip line on the surface can be obtained by using the electric image method for dielectric substrates. To verify the proposed approach, we conducted some experiments and compared the results of our approach with those of measurement and a commercial electromagnetic solver.

  • Cross-Domain Service Composition in OSGi Environments

    Choonhwa LEE  Seungjae LEE  Eunsam KIM  Wonjun LEE  

     
    LETTER-System Programs

      Vol:
    E92-D No:6
      Page(s):
    1316-1319

    This letter presents a new approach to provide inter-domain service compositions for OSGi environments. Our proposal of remote wire objects extends OSGi's wiring capability across the framework boundaries, so that even remote services can join in the composition. Hence, a better composition is made possible with a richer set of candidate services from foreign domains.

  • Data Analysis Technique of Atomic Force Microscopy for Atomically Flat Silicon Surfaces

    Masahiro KONDA  Akinobu TERAMOTO  Tomoyuki SUWA  Rihito KURODA  Tadahiro OHMI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    664-670

    A data analysis technology of atomic force microscopy for atomically flat silicon surfaces has been developed. Atomically flat silicon surfaces composed of atomic terraces and steps are obtained on (100) orientation 200 mm diameter wafers by annealing in pure argon ambience at 1,200 for 30 minutes. Atomically flat silicon surfaces are lead to improve the MOS inversion layer mobility and current drivability of MOSFETs and to decrease the fluctuations in electrical characteristics of MOSFETs. It is important to realize the technology that evaluates the flatness and the uniformity of atomically flat silicon surfaces. The off direction angle is calculated by using two straight edge lines selected from measurement data. And the off angle is calculated from average atomic terrace width under assumption that height difference between neighboring terraces is equal to the step height, 0.135 nm, of (100) silicon surface. The analyzing of flatness of each terrace can be realized by converting the measurement data using the off direction angle and the off angle. And, the average roughness of each terrace is about 0.017-0.023 nm. Therefore, the roughness and the uniformity of each terrace can be evaluated by this proposed technique.

  • A Latchup-Free ESD Power Clamp Circuit with Stacked-Bipolar Devices for High-Voltage Integrated Circuits

    Jae-Young PARK  Jong-Kyu SONG  Chang-Soo JANG  San-Hong KIM  Won-Young JUNG  Taek-Soo KIM  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    671-675

    The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the power supply voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a 0.35 µm BCD (Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the power supply voltage.

  • Improvements in a Ferrite Core Permeability Dispersion Measurement Based on a Microstrip Line Method

    Atsushi KURAMOTO  Tomohiko KANIE  Masato ADACHI  Masashi KATO  Yuichi NORO  Takashi TAKEO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:4
      Page(s):
    532-538

    In this work, errors in a ferrite core permeability dispersion measurement using a microstrip line (MSL) method, where three kinds of MSL circuits are used, are evaluated by both an electromagnetic simulation technique and experiments. The computer simulated results have shown that although the measurement errors decrease according to the diameter of the winding wire which passes through a sample ferrite core becomes larger, that is the spacing between the wire and the core gets narrower, a certain amount of error still remains. In order to overcome this problem and improve the measurement accuracy, a metal pipe electrically connected to a ground plane for shielding is placed around the wire of the non-magnetic core circuit which is one of the three MSL circuits noted above.

  • Impact of Randomized Cross-Polarization Discrimination on Channel Correlation Property of the 3GPP Spatial Channel Model

    Yu ZHANG  Jianhua ZHANG  Guangyi LIU  Ping ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:4
      Page(s):
    1300-1307

    The use of cross-polarized antennas for multiple-input multiple-output (MIMO) systems is receiving attention as they are able to double the number of antenna for half antenna spacing needs. This paper presents the channel correlation property of the 3rd Generation Partner Project (3GPP)/3GPP2 spatial channel model (SCM) with the polarization propagation. The statistical average of the per path polarization correlation given random cross-polarization discrimination (XPD) with co-located ideal tilted dipole antennas is derived. The impact on the random behavior of the polarization correlation due to the slant offset angle, the per path angular spread (AS), and the random XPD is analyzed. The simulation results show that the variation of polarization correlation caused by the random XPD is maximized with a 58 slant offset angle under the assumptions of all predefined scenarios in SCM. The per path AS has minor impact on the statistics of the polarization correlations. The randomness of polarization correlation is negligible for an XPD with small standard deviation.

  • Minimum Shield Insertion on Full-Chip RLC Crosstalk Budgeting Routing

    Peng-Yang HUNG  Ying-Shu LOU  Yih-Lang LI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:3
      Page(s):
    880-889

    This work presents a full-chip RLC crosstalk budgeting routing flow to generate a high-quality routing design under stringent crosstalk constraints. Based on the cost function addressing the sensitive nets in visited global cells for each net, global routing can lower routing congestion as well as coupling effect. Crosstalk-driven track routing minimizes capacitive coupling effects and decreases inductive coupling effects by avoiding placing sensitive nets on adjacent tracks. To achieve inductive crosstalk budgeting optimization, the shield insertion problem can be solved with a minimum column covering algorithm which is undertaken following track routing to process nets with an excess of inductive crosstalk. The proposed routing flow method can identify the required number of shields more accurately, and process more complex routing problems than the linear programming (LP) methods. Results of this study demonstrate that the proposed approach can effectively and quickly lower inductive crosstalk by up to one-third.

  • Segmentation of Arteries in Minimally Invasive Surgery Using Change Detection

    Hamed AKBARI  Yukio KOSUGI  Kazuyuki KOJIMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:3
      Page(s):
    498-505

    In laparoscopic surgery, the lack of tactile sensation and 3D visual feedback make it difficult to identify the position of a blood vessel intraoperatively. An unintentional partial tear or complete rupture of a blood vessel may result in a serious complication; moreover, if the surgeon cannot manage this situation, open surgery will be necessary. Differentiation of arteries from veins and other structures and the ability to independently detect them has a variety of applications in surgical procedures involving the head, neck, lung, heart, abdomen, and extremities. We have used the artery's pulsatile movement to detect and differentiate arteries from veins. The algorithm for change detection in this study uses edge detection for unsupervised image registration. Changed regions are identified by subtracting the systolic and diastolic images. As a post-processing step, region properties, including color average, area, major and minor axis lengths, perimeter, and solidity, are used as inputs of the LVQ (Learning Vector Quantization) network. The output results in two object classes: arteries and non-artery regions. After post-processing, arteries can be detected in the laparoscopic field. The registration method used here is evaluated in comparison with other linear and nonlinear elastic methods. The performance of this method is evaluated for the detection of arteries in several laparoscopic surgeries on an animal model and on eleven human patients. The performance evaluation criteria are based on false negative and false positive rates. This algorithm is able to detect artery regions, even in cases where the arteries are obscured by other tissues.

  • Impedance-Isolation Technique for ESD Protection Design in RF Integrated Circuits

    Ming-Dou KER  Yuan-Wen HSIAO  

     
    PAPER-Electronic Components

      Vol:
    E92-C No:3
      Page(s):
    341-351

    An impedance-isolation technique is proposed for on-chip ESD protection design for radio-frequency (RF) integrated circuits (ICs), which has been successfully verified in a 0.25-µm CMOS process with thick top-layer metal. With the resonance of LC-tank at the operating frequency of the RF circuit, the impedance (especially, the parasitic capacitance) of the ESD protection devices can be isolated from the RF input node of low-noise amplifier (LNA). Therefore, the LNA can be co-designed with the proposed impedance-isolation technique to simultaneously achieve excellent RF performance and high ESD robustness. The power gain (S21-parameter) and noise figure of the ESD protection circuits with the proposed impedance-isolation technique have been experimentally measured and compared to those with the conventional double-diodes ESD protection scheme. The proposed impedance-isolation technique had been demonstrated to be suitable for on-chip ESD protection design for RF ICs.

  • Superconducting Narrowband Filter for Receiver of Weather Radar Open Access

    Tamio KAWAGUCHI  Noritsugu SHIOKAWA  Kohei NAKAYAMA  Takatoshi WATANABE  Tatsunori HASHIMOTO  Hiroyuki KAYANO  

     
    INVITED PAPER

      Vol:
    E92-C No:3
      Page(s):
    296-301

    We have developed a high-temperature superconducting (HTS) filter with narrow bandwidth characteristic for receiver of weather radar in order to reduce interference between adjacent radar channels. To realize a filter with which a narrow bandwidth and low insertion loss are compatible, resonators with high unloaded Q (Qu) value are required. Hairpin microstrip resonators with 1.5 times wavelength were adopted to suppress the radiation loss and achieve a high Qu value. The developed HTS filter has 8-pole quasi-elliptic function response for sharp skirt characteristic. The measured frequency response of the developed filter shows center frequency of 5370 MHz, insertion loss of 2.04 dB and maximum return loss of 15 dB, which agrees with the designed responses.

  • Transition Edge Sensor-Energy Dispersive Spectrometer (TES-EDS) and Its Applications Open Access

    Keiichi TANAKA  Akikazu ODAWARA  Atsushi NAGATA  Yukari BABA  Satoshi NAKAYAMA  Shigenori AIDA  Toshimitsu MOROOKA  Yoshikazu HOMMA  Izumi NAKAI  Kazuo CHINONE  

     
    INVITED PAPER

      Vol:
    E92-C No:3
      Page(s):
    334-340

    The Transition Edge Sensor (TES)-Energy Dispersive Spectrometer (EDS) is an X-ray detector with high-energy resolution (12.8 eV). The TES can be mounted to a scanning electron microscope (SEM). The TES-EDS is based on a cryogen-free dilution refrigerator. The high-energy resolution enables analysis of the distribution of various elements in samples under low acceleration voltage (typically under 5 keV) by using K-lines of light elements and M lines of heavy elements. For example, the energy of the arsenic L line differs from the magnesium K line by 28 eV. When used to analyze the spore of the Pteris vittata L plant, the TES-EDS clearly reveals a different distribution of As and Mg in the micro region of the plant. The TES-EDS with SEM yields detailed information about the distribution of multi-elements in a sample.

  • Optical Microsensors Integration Technologies for Biomedical Applications Open Access

    Eiji HIGURASHI  Renshi SAWADA  Tadatomo SUGA  

     
    INVITED PAPER

      Vol:
    E92-C No:2
      Page(s):
    231-238

    This paper focuses on optical integration technology and its application in optical microsensors used in biomedical fields. The integration is based on the hybrid integration approach, achieving high performance, small size and weight, and lower cost. First, we describe the key technologies used in hybrid integration, namely passive alignment technology, low temperature bonding technology, and packaging technology for realizing advanced microsensors. Then, we describe an integrated laser Doppler flowmeter that can monitor blood flow in human skin.

  • Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    Wooram LEE  Gunhaeng HEO  Kwanho YOU  

     
    LETTER-Measurement Technology

      Vol:
    E92-A No:2
      Page(s):
    681-684

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

421-440hit(1068hit)