The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RP(993hit)

261-280hit(993hit)

  • Multi-Service MIMO Broadcasting with Different Receive Antennas

    Ruifeng MA  Zhaocheng WANG  Zhixing YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1994-1997

    The next generation wireless broadcasting systems combining with MIMO technology has drawn much attention recently. Considering the coexistence of receivers equipped with different numbers of antennas in these systems, there exists the special requirement to maximize the transmission rate for receivers having more antennas, while guaranteeing the normal rate for receivers having less antennas. In this letter, superposition coding is proposed to fulfill this requirement and the concept of broadcast cluster is introduced, wherein the optimized power allocation parameters are derived. The BER simulations for multiple services are provided to verify the significant SNR performance gap between receivers with various numbers of receive antennas.

  • Design of Optimized Prefilters for Time-Domain Lapped Transforms with Various Downsampling Factors

    Masaki ONUKI  Yuichi TANAKA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:9
      Page(s):
    1907-1917

    Decimation and interpolation methods are utilized in image coding for low bit rate image coding. However, the decimation filter (prefilter) and the interpolation filter (postfilter) are irreversible with each other since the prefilter is a wide matrix (a matrix whose number of columns are larger than that of rows) and the postfilter is a tall one (a matrix whose number of rows are larger than that of columns). There will be some distortions in the reconstructed image even without any compression. The method of interpolation-dependent image downsampling (IDID) was used to tackle the problem of producing optimized downsampling images, which led to the optimized prefilter of a given postfilter. We propose integrating the IDID with time-domain lapped transforms (TDLTs) to improve image coding performance.

  • Efficient Indoor Fingerprinting Localization Technique Using Regional Propagation Model

    Genming DING  Zhenhui TAN  Jinsong WU  Jinbao ZHANG  

     
    PAPER-Sensing

      Vol:
    E97-B No:8
      Page(s):
    1728-1741

    The increasing demand of indoor location based service (LBS) has promoted the development of localization techniques. As an important alternative, fingerprinting localization technique can achieve higher localization accuracy than traditional trilateration and triangulation algorithms. However, it is computational expensive to construct the fingerprint database in the offline phase, which limits its applications. In this paper, we propose an efficient indoor positioning system that uses a new empirical propagation model, called regional propagation model (RPM), which is based on the cluster based propagation model theory. The system first collects the sparse fingerprints at some certain reference points (RPs) in the whole testing scenario. Then affinity propagation clustering algorithm operates on the sparse fingerprints to automatically divide the whole scenario into several clusters or sub-regions. The parameters of RPM are obtained in the next step and are further used to recover the entire fingerprint database. Finally, the location estimation is obtained through the weighted k-nearest neighbor algorithm (WkNN) in the online localization phase. We also theoretically analyze the localization accuracy of the proposed algorithm. The numerical results demonstrate that the proposed propagation model can predict the received signal strength (RSS) values more accurately than other models. Furthermore, experiments also show that the proposed positioning system achieves higher localization accuracy than other existing systems while cutting workload of fingerprint calibration by more than 50% in the offline phase.

  • Comparison of Output Devices for Augmented Audio Reality

    Kazuhiro KONDO  Naoya ANAZAWA  Yosuke KOBAYASHI  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:8
      Page(s):
    2114-2123

    We compared two audio output devices for augmented audio reality applications. In these applications, we plan to use speech annotations on top of the actual ambient environment. Thus, it becomes essential that these audio output devices are able to deliver intelligible speech annotation along with transparent delivery of the environmental auditory scene. Two candidate devices were compared. The first output was the bone-conduction headphone, which can deliver speech signals by vibrating the skull, while normal hearing is left intact for surrounding noise since these headphones leave the ear canals open. The other is the binaural microphone/earphone combo, which is in a form factor similar to a regular earphone, but integrates a small microphone at the ear canal entry. The input from these microphones can be fed back to the earphones along with the annotation speech. We also compared these devices to normal hearing (i.e., without headphones or earphones) for reference. We compared the speech intelligibility when competing babble noise is simultaneously given from the surrounding environment. It was found that the binaural combo can generally deliver speech signals at comparable or higher intelligibility than the bone-conduction headphones. However, with the binaural combo, we found that the ear canal transfer characteristics were altered significantly by shutting the ear canals closed with the earphones. Accordingly, if we employed a compensation filter to account for this transfer function deviation, the resultant speech intelligibility was found to be significantly higher. However, both of these devices were found to be acceptable as audio output devices for augmented audio reality applications since both are able to deliver speech signals at high intelligibility even when a significant amount of competing noise is present. In fact, both of these speech output methods were able to deliver speech signals at higher intelligibility than natural speech, especially when the SNR was low.

  • Superpixel Based Depth Map Generation for Stereoscopic Video Conversion

    Jie FENG  Xiangyu LIN  Hanjie MA  Jie HU  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:8
      Page(s):
    2131-2137

    In this paper, we propose a superpixel based depth map generation scheme for the application to monoscopic to stereoscopic video conversion. The proposed algorithm employs four main processes to generate depth maps for all frames in the video sequences. First, the depth maps of the key frames in the input sequence are generated by superpixel merging and some user interactions. Second, the frames in the input sequences are over-segmented by Simple Linear Iterative Clustering (SLIC) or depth aided SLIC method depending on whether or not they have the depth maps. Third, each superpixel in current frame is used to match the corresponding superpixel in its previous frame. Finally, depth map is propagated with a joint bilateral filter based on the estimated matching vector of each superpixel. We show an improved performance of the proposed algorithm through experimental results.

  • Quasi-Linear Support Vector Machine for Nonlinear Classification

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E97-A No:7
      Page(s):
    1587-1594

    This paper proposes a so called quasi-linear support vector machine (SVM), which is an SVM with a composite quasi-linear kernel. In the quasi-linear SVM model, the nonlinear separation hyperplane is approximated by multiple local linear models with interpolation. Instead of building multiple local SVM models separately, the quasi-linear SVM realizes the multi local linear model approach in the kernel level. That is, it is built exactly in the same way as a single SVM model, by composing a quasi-linear kernel. A guided partitioning method is proposed to obtain the local partitions for the composition of quasi-linear kernel function. Experiment results on artificial data and benchmark datasets show that the proposed method is effective and improves classification performances.

  • Low Cost Metric for Comparing the Localization Efficacy of WLAN Access Points Using RF Site Survey Data

    Chamal SAPUMOHOTTI  Mohamad-Yusoff ALIAS  Su-Wei TAN  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:7
      Page(s):
    1403-1411

    Location fingerprinting utilizes periodic beacons transmitted by Wireless Local Area Network (WLAN) Access Points (APs) to provide localization in indoor environments. Currently no method is able to quantify the effectiveness of localization information provided by individual APs. Such a metric would enable the optimal placement of new APs as well as eliminating redundant APs so as to reduce the resources consumed by indoor localization software in client devices. This paper proposes LocationInfo, a metric that utilizes walk test data for quantifying the localization efficacy of APs. The performance of LocationInfo is evaluated using two experimental settings. First, it is used for identifying the optimal location for new APs. Second, it is used for filtering out excess APs in a crowded WLAN environment. In both experiments, LocationInfo outperforms existing metrics.

  • Wavelength-Routed Switching for 25-Gbit/s Optical Packets Using a Compact Transmitter Integrating a Parallel-Ring-Resonator Tunable Laser and an InGaAlAs EAM Open Access

    Toru SEGAWA  Wataru KOBAYASHI  Tatsushi NAKAHARA  Ryo TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    719-724

    We describe wavelength-routed switching technology for 25-Gbit/s optical packets using a tunable transmitter that monolithically integrates a parallel-ring-resonator tunable laser and an InGaAlAs electro-absorption modulator (EAM). The transmitter provided accurate wavelength tunability with 100-GHz spacing and small output power variation. A 25-Gbit/s burst-mode optical-packet data was encoded onto the laser output by modulating the integrated EAM with a constant voltage swing of 2 V at 45$^{circ}$C. Clear eye openings were observed at the output of the 100 GHz-spaced arrayed-waveguide grating with error-free operation being achieved for all packets. The tunable transmitter is very promising for realizing a high-speed, large-port-count and energy-efficient wavelength-routing switch that enables the forwarding of 100-Gbit/s optical packets.

  • Optical absorption characteristics and polarization dependence of single-layer graphene on silicon waveguide Open Access

    Kaori WARABI  Rai KOU  Shinichi TANABE  Tai TSUCHIZAWA  Satoru SUZUKI  Hiroki HIBINO  Hirochika NAKAJIMA  Koji YAMADA  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    736-743

    Graphene is attracting attention in electrical and optical research fields recently. We measured the optical absorption characteristics and polarization dependence of single-layer graphene (SLG) on sub-micrometer Si waveguide. The results for graphene lengths ranging from 2.5 to 200 $mu$ m reveal that the optical absorption by graphene is 0.09 dB/$mu$ m with the TE mode and 0.05 dB/$mu$ m with the TM mode. The absorption in the TE mode is 1.8 times higher than that in the TM mode. An optical spectrum, theoretical analysis and Raman spectrum indicate that surface-plasmon polaritons in graphene support TM mode light propagation.

  • Utilizing Human-to-Human Conversation Examples for a Multi Domain Chat-Oriented Dialog System

    Lasguido NIO  Sakriani SAKTI  Graham NEUBIG  Tomoki TODA  Satoshi NAKAMURA  

     
    PAPER-Dialog System

      Vol:
    E97-D No:6
      Page(s):
    1497-1505

    This paper describes the design and evaluation of a method for developing a chat-oriented dialog system by utilizing real human-to-human conversation examples from movie scripts and Twitter conversations. The aim of the proposed method is to build a conversational agent that can interact with users in as natural a fashion as possible, while reducing the time requirement for database design and collection. A number of the challenging design issues we faced are described, including (1) constructing an appropriate dialog corpora from raw movie scripts and Twitter data, and (2) developing an multi domain chat-oriented dialog management system which can retrieve a proper system response based on the current user query. To build a dialog corpus, we propose a unit of conversation called a tri-turn (a trigram conversation turn), as well as extraction and semantic similarity analysis techniques to help ensure that the content extracted from raw movie/drama script files forms appropriate dialog-pair (query-response) examples. The constructed dialog corpora are then utilized in a data-driven dialog management system. Here, various approaches are investigated including example-based (EBDM) and response generation using phrase-based statistical machine translation (SMT). In particular, we use two EBDM: syntactic-semantic similarity retrieval and TF-IDF based cosine similarity retrieval. Experiments are conducted to compare and contrast EBDM and SMT approaches in building a chat-oriented dialog system, and we investigate a combined method that addresses the advantages and disadvantages of both approaches. System performance was evaluated based on objective metrics (semantic similarity and cosine similarity) and human subjective evaluation from a small user study. Experimental results show that the proposed filtering approach effectively improve the performance. Furthermore, the results also show that by combing both EBDM and SMT approaches, we could overcome the shortcomings of each.

  • A 10-bit CMOS Digital-to-Analog Converter with Compact Size for Display Applications

    Mungyu KIM  Hoon-Ju CHUNG  Young-Chan JANG  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    519-525

    A 10-bit digital-to-analog converter (DAC) with a small area is proposed for data-driver integrated circuits of active-matrix liquid crystal display systems. The 10-bit DAC consists of a 7-bit resistor string, a 7-bit two-step decoder, a 2-bit logarithmic time interpolator, and a buffer amplifier. The proposed logarithmic time interpolation is achieved by controlling the charging time of a first-order low-pass filter composed of a resistor and a capacitor. The 7-bit two-step decoder that follows the 7-bit resistor string outputs an analog signal of the stepped wave with two voltage levels using the additional 1-bit digital code for the logarithmic time interpolation. The proposed 10-bit DAC is implemented using a 0.35-µm CMOS process and its supply voltage is scalable from 3.3V to 5.0V. The area of the proposed 10-bit logarithmic time interpolation DAC occupies 57% of that of the conventional 10-bit resistor-string DAC. The DNL and INL of the implemented 10-bit DAC are +0.29/-0.30 and +0.47/-0.36 LSB, respectively.

  • Fingerprint Verification and Identification Based on Local Geometric Invariants Constructed from Minutiae Points and Augmented with Global Directional Filterbank Features

    Chuchart PINTAVIROOJ  Fernand S. COHEN  Woranut IAMPA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:6
      Page(s):
    1599-1613

    This paper addresses the problems of fingerprint identification and verification when a query fingerprint is taken under conditions that differ from those under which the fingerprint of the same person stored in a database was constructed. This occurs when using a different fingerprint scanner with a different pressure, resulting in a fingerprint impression that is smeared and distorted in accordance with a geometric transformation (e.g., affine or even non-linear). Minutiae points on a query fingerprint are matched and aligned to those on one of the fingerprints in the database, using a set of absolute invariants constructed from the shape and/or size of minutiae triangles depending on the assumed map. Once the best candidate match is declared and the corresponding minutiae points are flagged, the query fingerprint image is warped against the candidate fingerprint image in accordance with the estimated warping map. An identification/verification cost function using a combination of distance map and global directional filterbank (DFB) features is then utilized to verify and identify a query fingerprint against candidate fingerprint(s). Performance of the algorithm yields an area of 0.99967 (perfect classification is a value of 1) under the receiver operating characteristic (ROC) curve based on a database consisting of a total of 1680 fingerprint images captured from 240 fingers. The average probability of error was found to be 0.713%. Our algorithm also yields the smallest false non-match rate (FNMR) for a comparable false match rate (FMR) when compared to the well-known technique of DFB features and triangulation-based matching integrated with modeling non-linear deformation. This work represents an advance in resolving the fingerprint identification problem beyond the state-of-the-art approaches in both performance and robustness.

  • Image Retargeting with Protection of Object Arrangement

    Kazu MISHIBA  Takeshi YOSHITOME  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:6
      Page(s):
    1583-1589

    The relative arrangement, such as relative positions and orientations among objects, can play an important role in expressing the situation such as sports games and race scenes. In this paper, we propose a retargeting method that allows maintaining the relative arrangement. Our proposed retargeting method is based on a warping method which finds an optimal transformation by solving an energy minimization problem. To achieve protection of object arrangement, we introduce an energy that enforces all the objects and the relative positions among these objects to be transformed by the same transformation in the retargeting process. In addition, our method imposes the following three types of conditions in order to obtain more satisfactory results: protection of important regions, avoiding extreme deformation, and cropping with preservation of the balance of visual importance. Experimental results demonstrate that our proposed method maintains the relative arrangement while protecting important regions.

  • Design of Small CRPA Arrays for Dual-Band GPS Applications

    Gangil BYUN  Seung Mo SEO  Ikmo PARK  Hosung CHOO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:6
      Page(s):
    1130-1138

    This paper proposes the design of small CRPA arrays for dual-band Global Positioning System (GPS) applications. The array consists of five elements and is mounted on a circular ground platform with a diameter of 15-cm. Each antenna element has a coupled feed structure and consists of a feed patch and two radiating patches for dual-band operation. An external chip coupler is utilized for a broad circular polarization (CP) bandwidth, and its measured characteristics are taken into account in our simulation for more accurate performance estimation. Detailed parameters are optimized by using a genetic algorithm (GA) in conjunction with the FEKO EM simulator. The optimized antenna is fabricated on a ceramic substrate, and its performance is measured in a full anechoic chamber. Furthermore, a field test is also conducted to verify the signal-to-noise ratio (SNR) for real GPS satellite signals. The results prove that the proposed array is suitable for use in GPS CRPA applications.

  • A 7-bit 1-GS/s Flash ADC with Background Calibration

    Sanroku TSUKAMOTO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    298-307

    A 7bit 1GS/s flash ADC using two bit active interpolation and background offset calibration is proposed and tested. It achieves background calibration using 36 pre-amplifiers with 139 comparators. To cancel the offset, two pre-amplifiers and 12 comparators are set to offline in turn while the others are operating. A two bit active interpolation design and an offset cancellation scheme are implemented in the latch stage. The interpolation and background calibration significantly reduce analog input signal as well as reference voltage load. Fabricated with the 90nm CMOS process, the proposed ADC consumes 95mW under a 1.2V power supply.

  • A Wideband 16×16-Element Corporate-Feed Hollow-Waveguide Slot Array Antenna in the 60-GHz Band

    Takashi TOMURA  Jiro HIROKAWA  Takuichi HIRANO  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:4
      Page(s):
    798-806

    A 16×16-element corporate-feed waveguide slot array antenna in the 60-GHz band is designed to achieve broadband reflection and high antenna efficiency. The sub-arrays consisting of 2×2-elements are designed to improve the reflection bandwidth by implementing lower Q and triple resonance. The designed antenna is fabricated by diffusion bonding of thin copper plates. A wide reflection bandwidth with VSWR less than 2.0 is obtained over 21.5%, 13.2GHz (54.7-67.8GHz). The measured gain is 32.6dBi and the corresponding antenna efficiency is 76.5%. The broad bandwidth of more than 31.5-dBi gain is realized over 19.2%, 11.9GHz (56.1-68.0GHz). The gain in bandwidth covers the whole of the license-free 60-GHz band (57-66GHz).

  • On the Minimum Caterpillar Problem in Digraphs

    Taku OKADA  Akira SUZUKI  Takehiro ITO  Xiao ZHOU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E97-A No:3
      Page(s):
    848-857

    Suppose that each arc in a digraph D = (V,A) has two costs of non-negative integers, called a spine cost and a leaf cost. A caterpillar is a directed tree consisting of a single directed path (of spine arcs) and leaf vertices each of which is incident to the directed path by exactly one incoming arc (leaf arc). For a given terminal set K ⊆ V, we study the problem of finding a caterpillar in D such that it contains all terminals in K and its total cost is minimized, where the cost of each arc in the caterpillar depends on whether it is used as a spine arc or a leaf arc. In this paper, we first show that the problem is NP-hard for any fixed constant number of terminals with |K| ≥ 3, while it is solvable in polynomial time for at most two terminals. We also give an inapproximability result for any fixed constant number of terminals with |K| ≥ 3. Finally, we give a linear-time algorithm to solve the problem for digraphs with bounded treewidth, where the treewidth for a digraph D is defined as the one for the underlying graph of D. Our algorithm runs in linear time even if |K| = O(|V|), and the hidden constant factor of the running time is just a single exponential of the treewidth.

  • Development of Compression Tolerable and Highly Implementable Watermarking Method for Mobile Devices

    Takeshi KUMAKI  Kei NAKAO  Kohei HOZUMI  Takeshi OGURA  Takeshi FUJINO  

     
    LETTER-Information Network

      Vol:
    E97-D No:3
      Page(s):
    593-596

    This paper reports on the image compression tolerability and high implementability of a novel proposed watermarking method that uses a morphological wavelet transform based on max-plus algebra. This algorithm is suitable for embedded low-power processors in mobile devices. For objective and unified evaluation of the capability of the proposed watermarking algorithm, we focus attention on a watermarking contest presented by the IHC, which belongs to the IEICE and investigate the image quality and tolerance against JPEG compression attack. During experiments for this contest, six benchmark images processed by the proposed watermarking is done to reduce the file size of original images to 1/10, 1/20, or less, and the error rate of embedding data is reduced to 0%. Thus, the embedded data can be completely extracted. The PSNR value is up to 54.66dB in these experiments. Furthermore, when the smallest image size is attained 0.49MB and the PSNR value become about 52dB, the proposed algorithm maintains very high quality with an error rate of 0%. Additionally, the processing time of the proposed watermarking can realize about 416.4 and 4.6 times faster than that of DCT and HWT on the ARM processor, respectively. As a result, the proposed watermarking method achieves effective processing capability for mobile processors.

  • Efficient Pedestrian Detection Using Multi-Scale HOG Features with Low Computational Complexity

    Soojin KIM  Kyeongsoon CHO  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:2
      Page(s):
    366-369

    In this paper, an efficient method to reduce computational complexity for pedestrian detection is presented. Since trilinear interpolation is not used, the amount of required operations for histogram of oriented gradient (HOG) feature calculation is significantly reduced. By calculating multi-scale HOG features with integral HOG in a two-stage approach, both high detection rate and speed are achieved in the proposed method.

  • Accurate Permittivity Estimation Method for 3-Dimensional Dielectric Object with FDTD-Based Waveform Correction

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:2
      Page(s):
    123-127

    Ultra-wideband pulse radar exhibits high range resolution, and excellent capability in penetrating dielectric media. With that, it has great potential as an innovative non-destructive inspection technique for objects such as human body or concrete walls. For suitability in such applications, we have already proposed an accurate permittivity estimation method for a 2-dimensional dielectric object of arbitrarily shape and clear boundary. In this method, the propagation path estimation inside the dielectric object is calculated, based on the geometrical optics (GO) approximation, where the dielectric boundary points and its normal vectors are directly reproduced by the range point migration (RPM) method. In addition, to compensate for the estimation error incurred using the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated, where an initial guess of the relative permittivity and dielectric boundary are employed for data regeneration. This study introduces the 3-dimensional extension of the above permittivity estimation method, aimed at practical uses, where only the transmissive data are effectively extracted, based on quantitative criteria that considers the spatial relationship between antenna locations and the dielectric object position. Results from a numerical simulation verify that our proposed method accomplishes accurate permittivity estimations even for 3-dimensional dielectric medium of wavelength size.

261-280hit(993hit)