The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RP(993hit)

521-540hit(993hit)

  • FEM Model Analysis of Single-Pole-Type Heads with Different Coil Structures

    Kiyoshi YAMAKAWA  Shingo TAKAHASHI  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E90-C No:8
      Page(s):
    1555-1560

    Pole-tip-driven structure, which is composed of a coil wounded at the main pole tip, is favorable for obtaining a sharp and strong head field as a single-pole-type head. Three kinds of pole-tip-driven-type heads with different yoke and coil structures are investigated in terms of magnetomotive force dependence of head field and effect of coil recession. Field calculation by finite-element method (FEM) showed that the three heads exhibited the same field sensitivity in spite of the difference in distribution of coil exciting field and magnetization of the main pole. In a lower range of magnetomotive force the heads showed different dependence of field sensitivity on the coil recession. However, there was not much difference in degradation of sensitivity in a region near the saturation of field. Thus, the importance of reducing coil recession was confirmed as reported earlier.

  • Excitation of Surface Plasmons on a Metal Grating and Its Application to an Index Sensor

    Yoichi OKUNO  Taikei SUYAMA  Rui HU  Sailing HE  Toyonori MATSUDA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E90-C No:7
      Page(s):
    1507-1514

    Excitation of plasmons on the surface of a metal grating placed in planar or conical mounting is investigated in detail. Most of the results of numerical computations are compared with experimental data. When a TM wave illuminates a metal grating, total or partial absorption of incident light occurs at angles of incidence at which the plasmon surface waves are excited. In planar mounting the absorption is generally strong and nearly total absorption is observed. While in conical mounting, it is not so strong as that in the planar mounting case and a considerable amount of incident power is reflected. This, however, is accompanied by enhanced TM-TE mode conversion and the greater part of the reflected wave is in the TE polarization. The reciprocal of the TM-wave efficiency, hence, is a practical measure in finding the angles of incidence at which the plasmons are excited. Because the angles are sensitive functions of the refractive index of a material over the grating surface, this phenomenon can be used as an index sensor.

  • Bit Error Rate Analysis of OFDM with Pilot-Assisted Channel Estimation

    Richol KU  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1725-1733

    The objective of this paper is to develop the theoretical foundation to the pilot-assisted channel estimation using delay-time domain windowing for the coherent detection of OFDM signals. The pilot-assisted channel estimation using delay-time domain windowing is jointly used with polynomial interpolation, decision feedback and Wiener filter. A closed-form BER expression is derived. The impacts of the delay-time domain window width, multipath channel decay factor, the maximum Doppler frequency are discussed. The theoretical analysis is confirmed by computer simulation.

  • New Variable-Bit-Rate Scheme for Waveform Interpolative Coders

    Heesik YANG  Sangbae JEONG  Minsoo HAHN  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:7
      Page(s):
    1469-1472

    In this paper, we propose a new variable-bit-rate speech coder based on the waveform interpolation concept. After the coder extracts all parameters, the amounts of distortions between the current and the predicted parameters, which are estimated by extrapolation using the past two parameters, are measured for all parameters. A parameter is not transmitted unless the distortion exceeds the preset threshold. At the decoder side, the non-transmitted parameter is reconstructed by extrapolation with the past two parameters used to synthesize signals. In this way, we can reduce 26% of the total bit rate while maintaining the speech quality degradation below the 0.1 perceptual evaluation of speech quality (PESQ) score.

  • An Investigation of Row-Bar Level Quasi-Static Test for Perpendicular Recording

    Damrongsak TONGSOMPORN  Apirat SIRITARATIWAT  

     
    PAPER-Storage Technology

      Vol:
    E90-C No:7
      Page(s):
    1533-1539

    Popcorn noise is a large transient noise spike at the reader shortly after writing due to unstable domains in writer yoke. The popcorn noise was found to dependent on write frequency. It is firstly reported that the popcorn noise occurred by the write instability of shielded-single-pole head (SSPH) can be captured in row-bar level QST which is experimentally confirmed. Thus, a PMR head can be rejected by the row-bar level QST. In addition, the writing stress traced by the MR transfer curve can possibly accelerate the head degradation.

  • Asymptotic Stabilization of Feedback Linearizable Systems via Estimated Diffeomorphism

    Ho-Lim CHOI  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:7
      Page(s):
    1476-1480

    The traditional feedback linearization method often requires the full system parameter and state information. In this paper, we consider an asymptotic stabilization problem of a class of feedback linearizable nonlinear systems by using less than the full parameter/state information. First, our approach is to classify system parameters into two categories--'directly used parameters' and 'indirectly used parameters.' Then, a feedback linearizing controller is designed by using only the 'directly used parameters' and the observer is utilized to estimate the transformed states (diffeomorphism) which includes 'indirectly used parameters.' Thus, in our control approach, we use only a partial set of system parameters and partial state information for asymptotic stability. The useful aspects of the proposed scheme are illustrated through an example.

  • Fuzzy Rule and Bayesian Network Based Line Interpolation for Video Deinterlacing

    Gwanggil JEON  Jechang JEONG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E90-B No:6
      Page(s):
    1495-1507

    Detecting edge directions and estimating the exact value of a missing line are currently active research areas in deinterlacing processing. This paper proposes a spatial domain fuzzy rule that is based on an interpolation algorithm, which is suitable to the region with high motion or scene change. The algorithm utilizes fuzzy theory to find the most accurate edge direction with which to interpolate missing pixels. The proposed fuzzy direction oriented interpolator operates by identifying small pixel variations in seven orientations (0°, 45°, -45°, 63°, -63°, 72°, and -72°), while using rules to infer the edge direction. The Bayesian network model selects the most suitable deinterlacing method among three deinterlacing methods and it successively builds approximations of the deinterlaced sequence, by evaluating three methods in each condition. Detection and interpolation results are presented. Experimental results show that the proposed algorithm provides a significant improvement over other existing deinterlacing methods. The proposed algorithm is not only for speed, but also effective for reducing deinterlacing artifacts.

  • Development of an Automated Method for the Detection of Chronic Lacunar Infarct Regions in Brain MR Images

    Ryujiro YOKOYAMA  Xuejun ZHANG  Yoshikazu UCHIYAMA  Hiroshi FUJITA  Takeshi HARA  Xiangrong ZHOU  Masayuki KANEMATSU  Takahiko ASANO  Hiroshi KONDO  Satoshi GOSHIMA  Hiroaki HOSHI  Toru IWAMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:6
      Page(s):
    943-954

    The purpose of our study is to develop an algorithm that would enable the automated detection of lacunar infarct on T1- and T2-weighted magnetic resonance (MR) images. Automated identification of the lacunar infarct regions is not only useful in assisting radiologists to detect lacunar infarcts as a computer-aided detection (CAD) system but is also beneficial in preventing the occurrence of cerebral apoplexy in high-risk patients. The lacunar infarct regions are classified into the following two types for detection: "isolated lacunar infarct regions" and "lacunar infarct regions adjacent to hyperintensive structures." The detection of isolated lacunar infarct regions was based on the multiple-phase binarization (MPB) method. Moreover, to detect lacunar infarct regions adjacent to hyperintensive structures, we used a morphological opening processing and a subtraction technique between images produced using two types of circular structuring elements. Thereafter, candidate regions were selected based on three features -- area, circularity, and gravity center. Two methods were applied to the detected candidates for eliminating false positives (FPs). The first method involved eliminating FPs that occurred along the periphery of the brain using the region-growing technique. The second method, the multi-circular regions difference method (MCRDM), was based on the comparison between the mean pixel values in a series of double circles on a T1-weighted image. A training dataset comprising 20 lacunar infarct cases was used to adjust the parameters. In addition, 673 MR images from 80 cases were used for testing the performance of our method; the sensitivity and specificity were 90.1% and 30.0% with 1.7 FPs per image, respectively. The results indicated that our CAD system for the automatic detection of lacunar infarct on MR images was effective.

  • A Surjective Mapping from Permutations to Room-to-Room Floorplans

    Ryo FUJIMAKI  Toshihiko TAKAHASHI  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    823-828

    A floorplan is a subdivision of a rectangle into rectangular faces with horizontal and vertical line segments. Heuristic search algorithms are used to find desired floorplans in applications, including sheet-cutting, scheduling, and VLSI layout design. Representation of floorplan is critical in floorplan algorithms, because it determines the solution space searched by floorplan algorithms. In this paper, we show a surjective mapping from permutations to room-to-room floorplans. This mapping gives us a simple representation of room-to-room floorplans.

  • An EM-Based Approach for Mining Word Senses from Corpora

    Thatsanee CHAROENPORN  Canasai KRUENGKRAI  Thanaruk THEERAMUNKONG  Virach SORNLERTLAMVANICH  

     
    PAPER-Natural Language Processing

      Vol:
    E90-D No:4
      Page(s):
    775-782

    Manually collecting contexts of a target word and grouping them based on their meanings yields a set of word senses but the task is quite tedious. Towards automated lexicography, this paper proposes a word-sense discrimination method based on two modern techniques; EM algorithm and principal component analysis (PCA). The spherical Gaussian EM algorithm enhanced with PCA for robust initialization is proposed to cluster word senses of a target word automatically. Three variants of the algorithm, namely PCA, sGEM, and PCA-sGEM, are investigated using a gold standard dataset of two polysemous words. The clustering result is evaluated using the measures of purity and entropy as well as a more recent measure called normalized mutual information (NMI). The experimental result indicates that the proposed algorithms gain promising performance with regard to discriminate word senses and the PCA-sGEM outperforms the other two methods to some extent.

  • Adsorption of Antibody Protein onto Plasma-Polymerized Film Characterized by Atomic Force Microscopy and Quartz Crystal Microbalance

    Hitoshi MUGURUMA  Satoshi MIURA  Naoya MURATA  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E90-C No:3
      Page(s):
    649-651

    Adsorption of antibody protein (anti-human IgG) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM) and quartz crystal microbalance (QCM). The PPF surface is very flat (less than 1 nm roughness) and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focus on two types of surfaces: one is the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic) and the other is an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface). The AFM image showed that the antibody molecules were densely adsorbed onto both surfaces and individual antibody molecules could be observed. The QCM profiles show a corresponding tendency with the AFM images. These results indicate that the plasma polymerized film can be the suitable biointerface for the application of biosensor and bioassay.

  • Study on Sub-THz Signal Input for Superconducting Electronic Devices

    Iwao KAWAYAMA  Yasushi DODA  Ryuhei KINJO  Toshihiko KIWA  Hironaru MURAKAMI  Masayoshi TONOUCHI  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    588-594

    Development of ultrafast optical interfaces that can operate in sub-terahertz region is important to apply superconducting electronic devices to the high-end systems. We have performed several fundamental researches to realize the ultrafast optical input interface for superconducting electronic devices. Firstly, we observed optical response of amorphous Ge thin films, and the results indicated that an amorphous Ge photoconductive switch could stably operate in a terahertz frequency range as an optical-to-electrical signal converter in the low-temperature region below Tc of YBCO. Next, we have fabricated optical-to-electrical signal conversion system with photomixing technique, and we have demonstrated the generation and the detection of high frequency signals over 50 GHz. Finally, we have observed optical responses of a Josephson vortex flow transistor under irradiation of femtosecond laser pulses, and the results suggeste that the device has high potential as an optical interface.

  • MLSE Detection with Blind Linear Prediction and Subcarriers Interpolation for DSTBC-OFDM Systems

    Seree WANICHPAKDEEDECHA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    562-570

    This paper proposes low-complexity blind detection for orthogonal frequency division multiplexing (OFDM) systems with the differential space-time block code (DSTBC) under time-varying frequency-selective Rayleigh fading. The detector employs the maximum likelihood sequence estimation (MLSE) in cooperation with the blind linear prediction (BLP), of which prediction coefficients are determined by the method of Lagrange multipliers. Interpolation of channel frequency responses is also applied to the detector in order to reduce the complexity. A complexity analysis and computer simulations demonstrate that the proposed detector can reduce the complexity to about a half, and that the complexity reduction causes only a loss of 1 dB in average Eb/N0 at BER of 10-3 when the prediction order and the degree of polynomial approximation are 2 and 1, respectively.

  • Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement

    Hiroyoshi TOGO  Naofumi SHIMIZU  Tadao NAGATSUMA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    436-442

    We have developed a near-field mapping system with a fiber-based electro-optic (EO) probe for microwave antenna characterization. In this probe, an EO crystal is mounted on the tip of an optical fiber through a collimating lens. Since the lens allows the crystal thickness to be lengthened by reducing the loss of an optical beam coupling back to the optical fiber, sensitivity is improved. Because the tip of the EO probe consists of a 1-mm-cubic EO crystal and contains no metallic components, there is very little disturbance of the mapped electric field. Fixing the optical fiber in a thin glass tube provides stable sensitivity during long-term mapping over a large area. The fabricated EO probe has a dynamic range larger than 45 dB, flat sensitivity from 1.95 to 20 GHz, and directivity with cross-axis sensitivity isolation greater than 30 dB. A comparison of the measured and calculated near fields of a dipole antenna showed negligible static or inductive coupling between the EO probe and the dipole antenna. Using a tissue-equivalent phantom to assess the specific absorption rate (SAR), we demonstrated the potential of the EO probe for mapping the electric field with information of amplitude and phase. The EO probe can detect an electric field of less than 0.6 V/m, which corresponds to a SAR of 0.5 mW/kg. This value satisfies the minimum detection limit defined in the regulations for determining SAR. This result shows the potential of the near-field mapping system with the fiber-based EO probe in practical applications.

  • A Low-Complexity Interpolation Method for Deinterlacing

    Pei-Yin CHEN  Yao-Hsien LAI  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E90-D No:2
      Page(s):
    606-608

    A direction-oriented spatial interpolation technique for image de-interlacing is presented in this letter. The experimental results demonstrate that our method achieves excellent performance in terms of both objective and subjective image quality. The proposed algorithm also has a very computationally simple structure, and proves to be a good candidate for low-cost hardware interpolator.

  • Novel Functionality and Material for Si-Photonics: Two-Photon Absorption Switching and Antimonide Hetero-Genius Epitaxy

    Tak-Keung LIANG  Kouichi AKAHANE  Naokatsu YAMAMOTO  Luis Romeu NUNES  Tetsuya KAWANISHI  Masahiro TSUCHIYA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    409-414

    Novel functionality and material were developed for Si-photonics in this study. Ultra-fast silicon all optical switches using two-photon absorption (TPA) were developed in silicon nanowire optical waveguide on silicon-on-insulator substrate. This waveguide can produce high optical intensities that yield optical nonlinearity such as TPA even at input optical powers typically used in fiber optic communication systems. In addition, we fabricated a GaSb based quantum well (QW) on a Si substrate. The emission wavelength of QW was 1.55 µm at room temperature, so that the new function can be developed on Si-photonics using this QW.

  • Characteristics of 60 GHz Analog RF-Optic Transceiver Module

    Jeha KIM  Yong-Duck CHUNG  Kwang-Seong CHOI  Young-Shik KANG  Kyoung-Ik CHO  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    359-364

    Using an electro-absorption duplexer (EAD) we presented a transceiver (TRx) module for dual function of both electrical-to-optical (E/O) and optical-to-electrical (E/O) conversion at 60 GHz band. The EAD chip was fabricated by monolithically integrating both a waveguide photodiode (PD) and an electro-absorption modulator (EAM) in association with traveling wave electrodes. We also investigated the issues of RF packaging in which the optoelectronic and electronic amplifier devices were co-packaged in a single housing. The RF impedance matching was accomplished in assistance with a microstrip bandpass filter.

  • Highly Accurate Measurement of LN Optical Intensity Modulators by Small RF Inputs

    Tsutomu NAGATSUKA  Yoshihito HIRANO  Yoji ISOTA  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    474-478

    A highly accurate measurement method of parameters of MZ-type LN optical intensity modulators is presented. In this method, a CW optical signal is input to an optical terminal and small CW RF signal is applied to an electrode of the modulator. Then sideband levels of an output optical signal at different bias points are measured by using optical spectrum analyzer. By using 1st order sideband levels which are measured at two different bias conditions, and using a compensation method to measured levels, we can obtain accurate chirp parameter even when very small power of RF signal is applied to the modulator. In this method, the chirp parameter can be obtained in good accuracy when the input RF voltage is only 3% of the halfwave voltage.

  • A 1.25-Gb/s Digitally-Controlled Dual-Loop Clock and Data Recovery Circuit with Enhanced Phase Resolution

    Chang-Kyung SEONG  Seung-Woo LEE  Woo-Young CHOI  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    165-170

    A new 1.25-Gb/s digitally-controlled dual-loop clock and data recovery circuit is realized. To overcome jitter problems caused by the phase resolution limit, the CDR has two phase generation stages: coarse generation by a phase interpolator and fine generation by a variable delay buffer. The performance of the proposed CDR was verified by behavioral and transistor-level simulations. A prototype CDR chip fabricated with 0.18 µm CMOS process shows error-free operation for 400 ppm frequency offset. The chip occupies 165255 µm2 and consumes 17.8 mW.

  • In Situ Observation of Reduction Behavior of Hemoglobin Molecules Adsorbed on Glass Surface

    Masayoshi MATSUI  Akiko NAKAHARA  Akiko TAKATSU  Kenji KATO  Naoki MATSUDA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1741-1745

    In situ observation of the adsorption process and reduction behavior of hemoglobin adsorbed on a bare glass surface was studied using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was almost the same as that of hemoglobin in solution. This result agrees with results previously reported by our group. The adsorbed hemoglobin molecules were also reduced by sodium dithionite solution. The adsorbed hemoglobin molecules still maintained their function in this experimental condition.

521-540hit(993hit)