The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RP(993hit)

921-940hit(993hit)

  • Optical Constants of Magnetic Fluids and Their Application to Optical Switches

    Mitsunori SAITO  Makoto TAKAKUWA  Mitsunobu MIYAGI  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:10
      Page(s):
    1465-1469

    The complex refractive indices n-jχ of typical magnetic fluids were evaluated for the sake of utilizing them as optical materials. Transmission and reflection spectra were measured in the wavelength range of 0.6-1.6 µm by using monochromators. Magnetic fluids were put into glass cells of 2.5-14-µm thickness for transmission measurement. Due to the absorption by magnetic fluids, the transmittance decreased notably with the increase of the sample thickness. The extinction coefficient χ was evaluated from the dependence of the transmittance on the sample thickness. χ was found to vary between 0.003 and 0.03 depending upon wavelength. The refractive index n was evaluated by fitting theoretical curves to the reflectances that were measured for various incident angles. n was found to vary between 1.6 and 1.7 depending slightly on wavelength. Since a magnetic fluid is a composite of ferrite particles and a solvent, the refractive index can be calculated by using the effective medium theory. The calculated value agreed well with the experimental value. Preliminary experiment of optical switching was also demonstrated by utilizing the mobility of a magnetic fluid.

  • Global Interpolation in the Segmentation of Handwritten Characters Overlapping a Border

    Satoshi NAOI  Maki YABUKI  Atsuko ASAKAWA  Yoshinobu HOTTA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:7
      Page(s):
    909-916

    The global interpolation method we propose evaluates segment pattern continuity and connectedness to produce characters with smooth edges while interpreting blank or missing segments based on global label connectivities, e.g, in extracting a handwritten character overlapping a border, correctly. Conventional character segmentation involving overlapping a border concentrates on removing the thin border based on known format information rather than extracting the character. This generates discontinuous segments which produce distortion due to thinning and errors in direction codes, and is the problem to recognize the extracted character. In our method, characters contacting a border are extracted after the border itself is labeled and removed automatically by devising how to extract wavy and oblique borders involved in fax communication. The absence of character segments is then interpolated based on segment continuity. Interpolated segments are relabeled and checked for matching against the original labeled pattern. If a match cannot be made, segments are reinterpolated until they can be identified. Experimental results show that global interpolation interprets the absence of character segments correctly and generates with smooth edges.

  • Enhanced Two-Level Optical Resonance in Spherical Microcavities

    Kazuya HAYATA  Tsutomu KOSHIDA  Masanori KOSHIBA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:4
      Page(s):
    454-461

    A self-induced-transparent (SIT) system that takes advantage of morphology dependent resonances (MDR's) in a Mie-sized microsphere doped with a resonant material is proposed. The present system is doubly resonant: one has microscopic origin (the two-level system), while the other has macroscopic origin (the MDR). In this geometry, owing to the feedback action of MDR's, the pulse area can be much expanded, and thus the electric-field amplitude of the incident pulse can be reduced substantially compared with the conventional one-way SIT propagation. Theoretical results that incorporate dephasing due to structural imperfections are shown.

  • An Ultra Low Noise 50-GHz-Band Amplifier MMIC Using an AIGaAs/InGaAs Pseudomorphic HEMT

    Takuo KASHIWA  Takayuki KATOH  Naohito YOSHIDA  Hiroyuki MINAMI  Toshiaki KITANO  Makio KOMARU  Noriyuki TANINO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:3
      Page(s):
    318-321

    An ultra low noise 50-GHz-Band amplifier (LNA) MMIC has been developed using an AlGaAs/InGaAs pseudomorphic HEMT. A noise figure of 1.8 dB with an associated gain of 8.1 dB is achieved at 50 GHz. The noise figure is less than 2.0 dB from 50 GHz to 52.5 GHz. This is the state-of-the-art noise figure for low noise amplifiers around 50 GHz. The success of this LNA development came from the excellent HEMT and MMIC technologies and the accurate modeling of active and passive elements. Good agreement between measured and simulated data over the band from 40 GHz to 60 GHz is obtained.

  • A Worst-Case Optimization Approach with Circuit Performance Model Scheme

    Masayuki TAKAHASHI  Jin-Qin LU  Kimihiro OGAWA  Takehiko ADACHI  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E78-A No:3
      Page(s):
    306-313

    In this paper, we describe a worst-case design optimization approach for statistical design of integrated circuits with a circuit performance model scheme. After formulating worst-case optimization to an unconstrained multi-objective function minimization problem, a new objective function is proposed to find an optimal point. Then, based on an interpolation model scheme of approximating circuit performance, realistic worst-case analysis can be easily done by Monte Carlo based method without increasing much the computational load. The effectiveness of the presented approach is demonstrated by a standard test function and a practical circuit design example.

  • Parallel Algorithms for Refutation Tree Problem on Formal Graph Systems

    Tomoyuki UCHIDA  Takayoshi SHOUDAI  Satoru MIYANO  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    99-112

    We define a new framework for rewriting graphs, called a formal graph system (FGS), which is a logic program having hypergraphs instead of terms in first-order logic. We first prove that a class of graphs is generated by a hyperedge replacement grammar if and only if it is defined by an FGS of a special form called a regular FGS. In the same way as logic programs, we can define a refutation tree for an FGS. The classes of TTSP graphs and outerplanar graphs are definable by regular FGSs. Then, we consider the problem of constructing a refutation tree of a graph for these FGSs. For the FGS defining TTSP graphs, we present a refutation tree algorithm of O(log2nlogm) time with O(nm) processors on an EREW PRAM. For the FGS defining outerplanar graphs, we show that the refutation tree problem can be solved in O(log2n) time with O(nm) processors on an EREW PRAM. Here, n and m are the numbers of vertices and edges of an input graph, respectively.

  • The Optimum Approximation of Multi-Dimensional Signals Based on the Quantized Sample Values of Transformed Signals

    Takuro KIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E78-A No:2
      Page(s):
    208-234

    A systematic theory of the optimum multi-path interpolation using parallel filter banks is presented with respect to a family of n-dimensional signals which are not necessarily band-limited. In the first phase, we present the optimum spacelimited interpolation functions minimizing simultaneously the wide variety of measures of error defined independently in each separate range in the space variable domain, such as 8 8 pixels, for example. Although the quantization of the decimated sample values in each path is contained in this discussion, the resultant interpolation functions possess the optimum property stated above. In the second phase, we will consider the optimum approximation such that no restriction is imposed on the supports of interpolation functions. The Fourier transforms of the interpolation functions can be obtained as the solutions of the finite number of linear equations. For a family of signals not being band-limited, in general, this approximation satisfies beautiful orthogonal relation and minimizes various measures of error simultaneously including many types of measures of error defined in the frequency domain. These results can be extended to the discrete signal processing. In this case, when the rate of the decimation is in the state of critical-sampling or over-sampling and the analysis filters satisfy the condition of paraunitary, the results in the first phase are classified as follows: (1) If the supports of the interpolation functions are narrow and the approximation error necessarily exists, the presented interpolation functions realize the optimum approximation in the first phase. (2) If these supports become wide, in due course, the presented approximation satisfies perfect reconstruction at the given discrete points and realizes the optimum approximation given in the first phase at the intermediate points of the initial discrete points. (3) If the supports become wider, the statements in (2) are still valid but the measure of the approximation error in the first phase at the intermediate points becomes smaller. (4) Finally, those interpolation functions approach to the results in the second phase without destroying the property of perfect reconstruction at the initial discrete points.

  • 10-Gb/s Repeaterless Transmission Using Standard Single-Mode Fiber with Pre-Chirping and Dispersion Compensation Techniques

    George ISHIKAWA  Motoyoshi SEKIYA  Hiroshi ONAKA  Terumi CHIKAMA  Hiroshi NISHIMOTO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    43-49

    This paper proposes that a combination of pre-chirping and dispersion compensation is effective in suppressing the waveform distortion due to the self-phase modulation and the group-velocity dispersion in 10 Gb/s repeaterless transmission using 1.3-µm zero-dispersion single-mode fibers (SMF) operating at a wavelength of 1.55µm. The following results were obtained through simulation. 1) Setting the α-parameter of a LiNbO3 optical modulator negative (α1.0) gives a large tolerance of the launched power Pin. 2) For 90-km SMF transmission, the maximum Pin is obtained when the dispersion compensation ratio β is from 50% to 70%. 3) For the allowable β as a function of the transmission distance when a dispersion compensator is located in the receiver (post-compensation scheme), the lower limit of β is determined by the constant residual dispersion value, which agrees well with the dispersion tolerance without dispersion compensation. Our 90-km SMF transmission experiments using a LiNbO3 optical modulator and a dispersion compensating fiber (DCF) confirmed the simulation results regarding the optimum value of β and the large tolerance of the fiber launched power. Based on the above investigations, we achieved a 10-Gb/s repeaterless 140-km SMF transmission with α1.0 and post-compensation.

  • One-Way Functions over Finite Near-Rings

    Eikoh CHIDA  Hiroki SHIZUYA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E78-A No:1
      Page(s):
    4-10

    A near-ring is an extended notion of a usual ring. Therefore a ring is a near-ring, but the converse does not necessarily hold. We investigate in this paper one-way functions associated with finite near-rings, and show that if there exists a one-way group homomorphism, there exists a one-way non-ring near-ring homomorphism (Theorem 1); if there exists a one-way ring homomorphism (Theorem 2). Further, we introduce a discrete logarithm problem over a finite near-ring, and show that the integer factoring is probabilistic polynomial-time Turing equivalent to a modified version of this problem (Theorem 3). Theorem 1 implies that under some standard cryptographic assumption, there is an affirmative but trivial solution to the extended version of the open question: Is there an encryption function f such that both f(x+y) and f(xy) are efficiently computed from given f(x) and f(y) ?

  • A Floorplanning Method with Topological Constraint Manipulation in VLSI Building Block Layout

    Tetsushi KOIDE  Yoshinori KATSURA  Katsumi YAMATANI  Shin'ichi WAKABAYASHI  Noriyoshi YOSHIDA  

     
    LETTER

      Vol:
    E77-A No:12
      Page(s):
    2053-2057

    This paper presents a heuristic floorplanning method that improves the method proposed by Vijayan and Tsay. It is based on tentative insertion of constraints, that intentionally produces redundant constraints to make it possible to search in a wide range of solution space. The proposed method can reduce the total area of blocks with the removal and insertion of constraints on the critical path in both horizontal and vertical constraint graphs. Experimental results for MCNC benchmarks showed that the quality of solutions of the proposed method is better than [7],[8] by about 15% on average, and even for the large number of blocks, the proposed method keeps the high quality of solutions.

  • A Video-Rate 10-b Triple-Stage Bi-CMOS A/D Converter

    Akira MATSUZAWA  Shoichiro TADA  

     
    PAPER-Analog LSIs

      Vol:
    E77-C No:12
      Page(s):
    1903-1911

    This paper describes the circuit design and experimental results of a video-rate 10-b analog-to-digital converter (ADC) suitable for consumer video products, such as high-definition TV sets. Triple-stage conversion scheme combined with two new conversion methods, "Dynamic Sliding Reference Method" and "Triangular Interpolation Method," and an internal Bi-CMOS Sample/Hold circuit have been developed. These conversion methods require no adjustment circuit to fit reference voltages between conversion stages and realize small active area. As a result, a maximum conversion frequency of 16 MHz, acceptable SNRs of 56 dB and 48 dB for 10 kHz and 8 MHz input frequency respectively and small DNLE of 0.75 LSB have been achieved. This ADC is fabricated with 1.2 µm Bi-CMOS technology and integrates very small number of bipolar transistors of 2 K on a small active area of 2.52.7 mm2 and consumes 350 mW.

  • Askant Vision Architecture Using Warp Model of Hough Transform--For Realizing Dynamic & Central/Peripheral Camera Vision--

    Hiroyasu KOSHIMIZU  Munetoshi NUMADA  Kazuhito MURAKAMI  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1206-1212

    The warp model of the extended Hough transform (EHT) has been proposed to design the explicit expression of the transform function of EHT. The warp model is a skewed parameter space (R(µ,ξ), φ(µ,ξ)) of the space (µ,ξ), which is homeomorphic to the original (ρ,θ) parameter space. We note that the introduction of the skewness of the parameter space defines the angular and positional sensitivity characteristics required in the detection of lines from the pattern space. With the intent of contributing some solutions to basic computer vision problems, we present theoretically a dynamic and centralfine/peripheral-coarse camera vision architecture by means of this warp model of Hough transform. We call this camera vision architecture askant vision' from an analogy to the human askant glance. In this paper, an outline of the EHT is briefly shown by giving three functional conditions to ensure the homeomorphic relation between (µ,ξ) and (ρ,θ) parameter spaces. After an interpretation of the warp model is presented, a procedure to provide the transform function and a central-coarse/peripheralfine Hough transform function are introduced. Then in order to realize a dynamic control mechanism, it is proposed that shifting of the origin of the pattern space leads to sinusoidal modification of the Hough parameter space.

  • Bifurcation of an Inductively Coupled Josephson Junction Circuit

    Tetsushi UETA  Hiroshi KAWAKAMI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1758-1763

    Some qualitative properties of an inductively coupled circuit containing two Josephson junction elements with a dc source are investigated. The system is described by a four–dimensional autonomous differential equation. However, the phase space can be regarded as S1×R3 because the system has a periodicity for the invariant transformation. In this paper, we study the properties of periodic solutions winding around S1 as a bifurcation problem. Firstly, we analyze equilibria in this system. The bifurcation diagram of equilibria and its topological classification are given. Secondly, the bifurcation diagram of the periodic solutions winding around S1 are calculated by using a suitable Poincar mapping, and some properties of periodic solutions are discussed. From these analyses, we clarify that a periodic solution so–called "caterpillar solution" is observed when the two Josephson junction circuits are weakly coupled.

  • Estimation of Source Particle Trajectories from Far Electromagnetic Fields Using the Linard-Wiechert Superpotentials: Twin Particles System

    Hideki KAWAGUCHI  Toshihisa HONMA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1802-1807

    A particle trajectory estimation method from far electromagnetic fields are discussed in this paper. Authors have already presented a trajectory estimation method for single particle system and good agreements between a source particle trajectory and an estimated one have been obtained. For this, this paper discusses twin particles system as an examples of multi-particles systems for simplicity. First of all, it is pointed out that far electromagnetic fields from the twin particles system show quite different aspect from the single particle system using an example, radiation patterns produced by two particles which carry out circular motion. This result tells us that any trajectory estimations for general multi-particles system are almost impossible. However, it is shown that when the distance between the particles is small, the estimation method for the single particle system can be applied to the twin particles system, and that twin particles effects appear as disturbance of estimated trajectory.

  • A Formal Linearization of Nonlinear Systems by the Chebyshev Interpolation and a Nonlinear Filter as an Application

    Kazuo KOMATSU  Hitoshi TAKATA  Teruo TSUJI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1753-1757

    In this paper we propose a formal linearization method which permits us to transform nonlinear systems into linear systems by means of the Chebyshev interpolation. Nonlinear systems are usually represented by nonlinear differential equations. We introduce a linearizing function that consists of a sequence of the Chebyshev polynomials. The nonlinear equations are approximated by the method of Chebyshev interpolation and linearized with respect to the linearizing function. The excellent characteristics of this method are as follows: high accuracy of the approximation, convenient design, simple operation, easy usage of computer, etc. The coefficients of the resulting linear system are obtained by recurrence formula. The paper also have error bounds of this linearization which show that the accuracy of the approximation by the linearization increases as the order of the Chebyshev polynomials increases. A nonlinear filter is synthesized as an application of this method. Numerical computer experiments show that the proposed method is able to linearize a given nonlinear system properly.

  • Interpolation Technique of Fingerprint Features for Personal Verification

    Kazuharu YAMATO  Toshihide ASADA  Yutaka HATA  

     
    LETTER

      Vol:
    E77-D No:11
      Page(s):
    1306-1309

    In this letter we propose an interpolation technique for low-quality fingerprint images for highly reliable feature extraction. To improve the feature extraction rate, we extract fingerprint features by referring to both the interpolated image obtained by using a directional Laplacian filter and the high-contrast image obtained by using histogram equalization. Experimental results show the applicability of our method.

  • The Improvement of Compositional Distribution in Depth and Surface Morphology of YBa2Cu3O7-δ-SrTiOx Multilayers

    Chien Chen DIAO  Gin-ichiro OYA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1209-1217

    Almost stoichiometric YBa2Cu3O7-δ(110) or (103) and SrTiOx(110) films, and multilayer films consisting of them have successfully been grown epitaxially on hot SrTiO3 substrates by 90off-axis rf magnetron sputtering with facing targets. Their whole composition, compositional distribution in depth, crystallinity and surface morphology were examined by inductively coupled plasma spectroscopy, Auger electron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy or atomic force microscope, respectively. When any YBa2Cu3O7-δ film was exposed to air after deposition, a Ba-rich layer was formed in a near surface region of the film. However, such a compositional distribution in depth of the film was improved by in situ deposition of a SrTiOx film on it. Moreover, the surface roughness of the YBa2Cu3O7-δ film was improved by predeposition of a SrTiOx film under it. On the basis of these results, both YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiO3(sub.) and YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiOx/SrTiO3(sub.) multilayer films with average surface roughness of 3 nm were grown reproducibly, which had uniform compositional distribution throughout the depth of the film except a near surface region of the top YBa2Cu3O7-δ layer. A new 222 structure described by Sr8Ti8O20 (Sr2Ti2O5) with a long range ordered arrangement of oxygen vacancies was formed in the SrTiOx films deposited epitaxially on YBa2Cu3O7-δ films.

  • Piecewise Parametric Cubic Interpolation

    Caiming ZHANG  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E77-D No:8
      Page(s):
    869-876

    A method is described for constructing an interpolant to a set of arbitrary data points (xi, yi), i1, 2, , n. The constructed interpolant is a piecewise parametric cubic polynomial and satisfies C1 continuity, and it reproduces all parametric polynomials of degree two or less exactly. The experiments to compare the new method with Bessel method and spline method are also shown.

  • Design of a CAM-Based Collision Detection VLSI Processor for Robotics

    Masanori HARIYAMA  Michitaka KANEYAMA  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1108-1115

    Real-time collision detection is one of the most important intelligent processings in robotics. In collision detection, a large storage capasity is usually required to store the 3-dimensional information on the obstacles located in a workspace. Moreover, high-computational power is essential in not only coordinate transformation but also matching operation. In the proposed collision detection VLSI processor, the matching operation is drastically accelerated by using a content-addressable memory (CAM). A new obstacle representation based on a union of rectangular solids is also used to reduce the obstacle memory capacity, so that the collision detection can be performed by only magnitude comparison in parallel. Parallel architecture using several identical processor elements (PEs) is employed to perform the coordinate transformation at high speed, and each PE performs coordinate transformation at high speed based on the COordinate Rotation DIgital Computation (CORDIC) algorithms. When the 16 PEs and 144-kb CAM are used, the performance is evaluated to be 90 ms.

  • On Restoration and Approximation of Multi-Dimensional Signals Using Sample Values of Transformed Signals

    Takuro KIDA  

     
    PAPER

      Vol:
    E77-A No:7
      Page(s):
    1095-1116

    In this tutorial exposition, we present a discussion for the extended interpolation approximation with respect to a class of 1- or multi-dimensional signals. We will provide some conditions concerning to the convergence of the approximation signal to the original one. An exposition for the optimum interpolation is given with respect to a class of n-dimensional signals whose Fourier spectrums have the weighted L2 norms smaller than a given positive number. In this discussion, in the first phase, we present the outline of the approximation which minimizes the measure of error equal to the envelope of the approximation errors. Initially, it is assumed that the infinite number of interpolation functions with different functional forms are used in the approximation. However, the resultant optimum interpolation functions are expressed as the parallel shifts of the finite number of n-dimensional functions. It should be noted that the optimum interpolation functions presented in this tutorial exposition minimize wide variety of measures of error defined in each separate area in the space variable domain at the same time. Interesting reciprocal relation in the approximation, is discussed. An equivalent expression of the approximation formula in the frequency domain, is provided also. In this paper, we will also introduce the optimum approximation using space-limited analysis filters and interpolation functions with the infinite supports. This approximation satisfies beautiful orthogonal relation and minimizes various measure of error symultaneously including many types of measure of error defined in the frequency domain.

921-940hit(993hit)