The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

4101-4120hit(4570hit)

  • Performance Analysis of Multilevel Coding Scheme for Rayleigh Fading Channel with Gaussian Noise

    Kazuyuki KANEDA  Haruo OGIWARA  

     
    PAPER-Coded Modulation

      Vol:
    E79-A No:9
      Page(s):
    1371-1378

    To evaluate the coding performance of a multilevel coding scheme for Rayleigh fading channel, a virtual automatic gain control and interleaving are applied to the scheme. The automatic gain control is assumed only for the theoretical evaluation of the performance. It is noted that the bit error-rate performance of the scheme for phase shift keying does not change whether the control is assumed or not. By the effect of the virtual automatic gain control and the interleaving, a fading channel with Gaussian noise is theoretically converted into an equivalent time-invariant channel with non-Gaussian noise. The probability density function of the converted non-Gaussian noise is derived. Then, the function is applied to a formula of the bit error-rate of the scheme for non-Gaussian noise. The formula is derived for phase shift keying by modifying that for pulse amplitude modulation. The coding performance for the non-Gaussian noise channel is evaluated by the formula, and the suitable coding with ideal interleaving is searched. As a result, the coding gain of 28 dB is obtained at the bit error-rate of 10-6 by using BCH code of length 31. This result is confirmed by a simulation for the fading channel. Then, the effectiveness of the formula for finite interleaving is evaluated. Finally, the usefulness of the formula, where the noise power is doubled, is shown for a case of a differential detection.

  • Call Routing and Data Model for Inter-Network Roaming in PCS

    Shigefusa SUZUKI  Takao NAKANISHI  

     
    PAPER-Network architecture, signaling and protocols for PCS

      Vol:
    E79-B No:9
      Page(s):
    1371-1379

    Personal communication systems (PCS) have more signalling traffic than conventional fixed networks and require large-scale databases to manage users' profiles, which are sets of data items, such as the location the user is currently visiting and the user's authentication key, necessary for a PCS user to be provided with PCS services. This paper focuses on inter-network roaming in PCS environments. In designing a PCS supporting roaming service, it is essential to avoid increased signalling traffic and data searching time in the database. We first identify the appropriate domains for three routing schemes-Direction Routing, Redirection Routing, and Look-ahead Routing-from the viewpoints of the number of signals for inter-network roaming and roaming probability. We do this for two kinds of PCS database network architecture, Home Location Register (HLR) and Visitor Location Register (VLR), and show that Look-ahead Routing is the best scheme for the HLR network architecture (considering the number of signals for intra-network and inter-network database access) and that in the VLR network architecture, the decreasing of the roaming probability expands domains for which Redirection Routing is appropriate. We also propose a generic PCS data model that inter-network roaming interfaces can use to search effectively for a user's profile. The data model clarifies the contents of a set of data items which share certain characteristics, data items that the contents compose, and the relationships (data structures) between sets of data items. The model is based on the X. 500 series recommendations, which are applied for an Intelligent Network. We also propose a data structure between sets of data items using the directory information tree and show the ASN. 1 notations of the data model.

  • A New M-ary Spread-Spectrum Multiple-Access Scheme in the Presence of Carrier Frequency Offset

    Tadahiro WADA  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Communication/Spread Spectrum

      Vol:
    E79-A No:9
      Page(s):
    1415-1422

    The performance of an M-ary spread-spectrum multiple-access (M-ary/SSMA) scheme in the presence of carrier frequency offset is discussed in this paper. The influence of carrier frequency offset on the non-coherent reception of M-ary/SSMA signals is examined and it is shown that the carrier frequency offset degrades the performance remarkably, yet. this influence has a distinctive property. Making use of this property, we propose a new M-ary/SSMA scheme that can mitigate the influence of the carrier frequency offset. The scheme is based on the assignment of two distinctive Hadamard codes to in-phase and quadrature components of the transmitted signal. The effect of simultaneous transmission is evaluated in terms of bit-error-rate performance with the carrier frequency offset. As the result, it is observed that the satisfactory bit-error-rate performance can be achieved in the presence of carrier frequendy offset.

  • A Highly Parallel Systolic Tridiagonal Solver

    Takashi NARITOMI  Hirotomo ASO  

     
    PAPER-Computer Systems

      Vol:
    E79-D No:9
      Page(s):
    1241-1247

    Many numerical simulation problems of natural phenomena are formulated by large tridiagonal and block tridiagonal linear systems. In this paper, an efficient parallel algorithm to solve a tridiagonal linear system is proposed. The algorithm named bi-recurrence algorithm has an inherent parallelism which is suitable for parallel processing. Its time complexity is 8N - 4 for a tridiagonal linear system of order N. The complexity is little more than the Gaussian elimination algorithm. For parallel implementation with two processors, the time complexity is 4N - 1. Based on the bi-recurrence algorithm, a VLSI oriented tridiagonal solver is designed, which has an architecture of 1-D linear systolic array with three processing cells. The systolic tridiagonal solver completes finding the solution of a tridiagonal linear system in 3N + 6 units of time. A highly parallel systolic tridiagonal solver is also presented. The solver is characterized by highly parallel computability which originates in the divide-and-conquer strategy and high cost performance which originates in the systolic architecture. This solver completes finding the solution in 10(N/p) + 6p + 23 time units, where p is the number of partitions of the system.

  • Individual Identification by Unifying Profiles and Full Faces

    Hiroto SHINGAI  Ryuzo TAKIYAMA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1274-1278

    An individual identification system is developed. In this system, we unify profile curve identification and full face image identification to obtain more successful recognition rate. In profile cruve identification process, the P-type Fourier descriptor is made use of. In full face image identification process, mosaic density values are made use of. A combination of the two processes shows higher recognition rates than those obtained by each single process.

  • Failure Diagnosis and Fault Tolerant Supervisory Control System

    Kwang-Hyun CHO  Jong-Tae LIM  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E79-D No:9
      Page(s):
    1223-1231

    We propose in this paper a systematic way for analyzing discrete event dynamic systems to classify faults and failures quantitatively and to find tolerable fault event sequences embedded in the system. An automated failure diagnosis scheme with respect to the nominal normal operating event sequences and the supervisory control for tolerable fault event sequences are presented. Moreover the supervisor failure diagnosis with respect to the tolerable fault event sequences is considered. Finally, a case study of plasma etching system is described.

  • Compression Coding Using an Optical Model for a Pair of Range and Grey-Scale Images of 3D Objects

    Kefei WANG  Ryuji KOHNO  

     
    PAPER-Source Coding/Security

      Vol:
    E79-A No:9
      Page(s):
    1330-1337

    When an image of a 3D object is transmitted or recorded, its range image as well its grey-scale image are required. In this paper, we propose a method of coding for efficient compression of a pair of a pair of range and grey-scale images of 3D objects. We use Lambertian reflection optical model to model the relationship between a 3D object shape and it's brightness. Good illuminant direction estimation leads to good grey-scale image generation and furthermore effects compression results. A method for estimating the illuminant derection and composite albedo from grey-scale image statistics is presented. We propose an approach for estimating the slant angle of illumination based on an optical model from a pair of range and grey-scale images. Estimation result shows that our approach is better. Using the estimated parameters of illuminant direction and composite albedo a synthetic grey-scale image is generated. For comparison, a comparison coding method is used, in which we assume that the range and grey-scale images are compressed separately. We propose an efficient compression coding method for a pair of range and grey-scale images in which we use the correlation between range and grey-scale images, and compress them together. We also evaluate the coding method on a workstation and show numerical results.

  • 3-D Shape Reconstruction from Endoscope Image Sequences by The Factorization Method

    Koichiro DEGUCHI  Tsuyoshi SASANO  Himiko ARAI  Hiroshi YOSHIKAWA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1329-1336

    A new application of the factorization method is reported for 3-D shape reconstruction from endoscope image sequences. The feasibility of the method is verified with some theoretical considerations and results of extensive experiments. This method was developed by Tomasi and Kanade, and improved by Poelman and Kanade, with the aim of achieving accurate shape reconstruction by using a large number of points and images, and robustly applying well-understood matrix computations. However, the latter stage of the method, called normalization, is not as easily understandable as the use of singular value decomposition in the first stage. In fact, as shown in this report, many choices are possible for this normalization and a variety of results have been obtained depending on the choice. This method is easy to understand, easy to implement, and provides sufficient accuracy when the approximation used for the optical system is reasonable. However, the details of the theoretical basis require further study.

  • On the Effect of Scheduling in Test Generation

    Tomoo INOUE  Hironori MAEDA  Hideo FUJIWARA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E79-D No:8
      Page(s):
    1190-1197

    The order of faults which are targeted for test-pattern generation affects both of the processing time for test generation and the number of generated test-patterns. This order is referred to as a test generation schedule. In this paper, we consider the effect of scheduling in test generation. We formulate the test generation scheduling problem which minimizes the cost of testing. We propose schedulings based on test-pattern generation time, dominating probability and dominated probability, and analyze the effect of these schedulings. In the analysis, we show that the total test-pattern generation time and the total number of test-patterns can be reduced by the scheduling according to the descending order of dominating probability prior to the ascending order of test-pattern generation. This is confirmed by the experiments using ISCAS'85 benchmark circuits. Further, in the experiments, we consider eight schedulings, and show that the scheduling according to the ascending order of dominated probability is the most effective of them.

  • A Minimal Lattice Realization of the Systems Interpolating Markov and Covariance Parameters

    Kazumi HORIGUCHI  

     
    LETTER-Systems and Control

      Vol:
    E79-A No:8
      Page(s):
    1283-1286

    We present a minimal lattice realization of MIMO linear discrete-time systems which interpolate the desired Markov and covariance parameters. The minimal lattice realization is derived via a recursive construction algorithm based on the state space description and it parametrizes all the interpolants.

  • Low Power Multi-Media TFT-LCD Using Multi-Field Driving Method

    Haruhiko OKUMURA  Goh ITOH  Kouhei SUZUKI  Kouji SUZUKI  

     
    LETTER

      Vol:
    E79-C No:8
      Page(s):
    1109-1111

    We have proposed a concept of low power drive system for a multi-media TFT-LCD using MFD in which a displayed image is divided into some interlaced subfield images and the number of interlaced subfields can be changed depending on the moving quantities of displayed images. This method has been applied to a 9.5" TFT-LCD and successful operation has been confirmed without moving image degradation.

  • Implantable Temperature Measurement System Using the Parametron Phenomenon

    Yoshiaki SAITOH  Akira KANKE  Isamu SHINOZAKI  Tohru KIRYU  Jun'ichi HORI  

     
    PAPER-Measurement and Metrology

      Vol:
    E79-B No:8
      Page(s):
    1129-1134

    Adapting the principle of parametron oscillation, a small implantable temperature sensor requiring no internal power supply is described. Since this sensor's oscillation frequency is half that of the excitation frequency, the oscillated signal can be measured from the reception side, free of any signal, interference, simply by positioning the sensor and the excitation antenna so that; 1) they are separated up to 95 cm in the air; 2) a 41 cm gap, the phantom equivalent of the thickness of the human abdomen maintain between them. In the temperature-dependent quartz resonator sensor, oscillation occurs only when frequency and temperature correspond. The excitation power is then adjusted so that the frequency bandwidth narrows. As a result, the margin of error in measuring the temperature is minimized; (0.07).

  • A New CMOS Linear Transconductor

    Sang-Ho LEE  Tae-Soo YIM  Young-Hwan KIM  

     
    LETTER-Electronic Circuits

      Vol:
    E79-C No:8
      Page(s):
    1166-1170

    A new CMOS analogue transconductor is proposed and simulated. This transconductor is based on the operation of MOS transistors in the linear region and has a good linearity. The simulation result shows that less than 1% distortion can be obtained for the differential input signal of 6.4 Vp-p with IB=80µA and supply voltage of 5V.

  • Information on Demand on Nomadic Collaboration Support System

    Shinya MURAI  Akihiko SUGIKAWA  

     
    LETTER

      Vol:
    E79-B No:8
      Page(s):
    1083-1085

    The use of high-performance portable computers has become widespread. It is expected that many people will carry large amounts of multimedia information in these portable computers. In face-to-face communication, however, few systems are capable of exchanging multimedia information. Previously, we developed the Nomadic Collaboration Support System, which supports face-to-face communication through conversation and the distribution of documents. The system makes it possible for each participant in face-to-face communication to distribute electronic documents to other participants and edit them synchronously. However, it is often impossible for participants to obtain suitable amounts of information during face-to-face communication because of the difficulty in tailoring the documents for each participant. In this paper, we propose a technique to exchange hypertext documents on the Nomadic Collaboration Support System, which will allow each participant to obtain the most suitable amount of information possible from the distributor without his tailoring documents for each participant.

  • (Mπ)2: A Hierarchical Parallel Processing System for the Multipass Rendering Method

    Hiroaki KOBAYASHI  Hitoshi YAMAUCHI  Yuichiro TOH  Tadao NAKAMURA  

     
    PAPER-Architectures

      Vol:
    E79-D No:8
      Page(s):
    1055-1064

    This paper proposes a hierarchical parallel processing system for the multipass rendering method. The multipass rendering method based on the integration of radiosity and ray-tracing can synthesize photo-realistic images. However, the method is also computationally expensive. To accelerate the multipass rendering method, the system, called (Mπ)2, employs two kinds of parallel processing schemes. As a coarse-grain parallel processing, object-space parallel processing with multiple processing elements based on the object-space subdivision is adapted, and each processing element (PE) is equipped with multiple pipelined units for a fine-grain parallel processing. To balance load among the system, static load balancing at the PE level and dynamic load balancing at the pipelined unit level within the PE are introduced. Especially, we propose a novel static load allocation scheme, skewed-distributed allocation, which can effectively distribute a three-dimensional object space to one- or two-dimensional processor configuration of the (Mπ)2 system. Simulation experiments show that the two-dimensional (Mπ)2 systems with the skewed-distributed allocation outperform the three-dimensional systems with the non-skewed distributed allocation. Since lower dimensional systems can be built at a lower cost than higher dimensional systems, the skewed-distributed allocation will be meritorious. Besides, by the combination of static load balancing by the skewed-distributed allocation and the dynamic load balancing by dynamic ray allocation within each PE, the system performance can be further boosted. We also propose a cached frame buffer system to relieve access collision on a frame buffer.

  • Algorithm Transformation for Cube-Type Networks

    Masaru TAKESUE  

     
    PAPER-Algorithms

      Vol:
    E79-D No:8
      Page(s):
    1031-1037

    This paper presents a method for mechanically transforming a parallel algorithm on an original network so that the algorithm can work on a target network. It is assumed that the networks are of cube-type such as the shuffle-exchange network, omega network, and hypercube. Were those networks isomorphic to each other, the algorithm transformation is an easy task. The proposed transformation method is based on a novel graphembedding scheme <φ: δ, κ, π, ψ>. In addition to the dilating operation δ of the usual embedding scheme <φ: δ>, the novel scheme uses three primitive graph-transformation operations; κ (= δ-1) for contracting a path into a node, π for pipelining a graph, and ψ (= π-1) for folding a pipelined graph. By applying the primitive operations, the cube-type networks can be transformed so as to be isomorphic to each other. Relationships between the networks are represented by the composition of applied operations. With the isomorphic mapping φ, an algorithm in a node of the original network can be simulated in the corresponding node(s) of the target network. Thus the algorithm transformation is reduced to routine work.

  • A Generalized Treatment of the DIT and the DIF Algorithms Using Recursive Polynomial Factorization

    Hideo MURAKAMI  

     
    LETTER

      Vol:
    E79-A No:8
      Page(s):
    1243-1245

    THe decimation-in-time (DIT) and the decimation-in-frequency (DIF) algorithms are the most well-known fast algorithms for computing the discrete Fourier transform(DFT). These algorithms constitute the basis of the fast Fourier transform (FFT) implementations, including the pipeline implementation and other parallel configurations. This paper derives an alternative generalization of the algorithms which applies for sequences whose lengths are not a power of two. The treatment is consistent with the radix-two DIF and DIT algorithms, and the generalization is useful for utilizing the accumulated technologies of the FFT algorithm for such sequences.

  • 60-GHz Virtual Common-Drain-Biased Oscillator Design Using an Empirical HEMT Model

    Kazuo SHIRAKAWA  Yoshihiro KAWASAKI  Masahiko SHIMIZU  Yoji OHASHI  Tamio SAITO  Naofumi OKUBO  Yashimasa DAIDO  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:8
      Page(s):
    1144-1151

    We studied a 0.15-µm InGaP/InGaAs/GaAs pseudomorphic HEMT operating under a negative drain bias, using a parameter extraction technique based on an analytical parameter transformation. The bias-dependent data of smallsignal equivalent circuit elements was obtained from Sparameters measured at up to 62.5 GHz at various bias settings. We then described the intrinsic part of the device using a new empirical large-signal model in which charge conservation and dispersion effects were taken into consideration. As far as we know, this is the first report to clarify the behavior of a HEMT operating under negative drain bias. We included our largesignal model in a commercially-available harmonic-balance simulator as a user-defined model, and designed a 60 GHz MMIC oscillator. The fabricated oscillator's characteristics agreed well with the design calculations.

  • A Gerschgorin Radii Based Source Number Detection: Analysis and Simulations

    Hsien-Tsai WU  Jar-Ferr YANG  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1166-1172

    In this paper, we first analyze the resolution performance of the Gerschgorin radii based source number estimator (GDE, Gerschgorin Disk Estimator) proposed in [1] for independent closely-spaced plane waves. Based upon this analysis, we verify the resolution threshold of the Gerschgorin radii based method for two sources. New close-form expressions of the Gerschgorin radii are formulated and examined. For improvement of detection performance, we then further propose a enhanced GDE method (EGDE). Examples and comparisons with methods based on Gerschgorin radii and weighted Gerschgorin radii, as well as conventional methods are included. Finally, multi-source and/or closely spaced source problems are discussed.

  • On the Kernel MUSIC Algorithm with a Non-Redundant Spatial Smoothing Technique

    Hiroshi SHIMOTAHIRA  Fumie TAGA  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1225-1231

    We propose the Kernel MUSIC algorithm as an improvement over the conventional MUSIC algorithm. This algorithm is based on the orthogonality between the image and kernel space of an Hermitian mapping constructed from the received data. Spatial smoothing, needed to apply the MUSIC algorithm to coherent signals, is interpreted as constructing procedure of the Hermitian mapping into the subspace spanned by the constituent vectors of the received data. We also propose a new spatial smoothing technique which can remove the redundancy included in the image space of the mapping and discuss that the removal of redundancy is essential for improvement of resolution. By computer simulation, we show advantages of the Kernel MUSIC algorithm over the conventional one, that is, the reduction of processing time and improvement of resolution. Finally, we apply the Kernel MUSIC algorithm to the Laser Microvision, an optical misroscope we are developing, and verify that this algorithm has about two times higher resolution than that of the Fourier transform method.

4101-4120hit(4570hit)