The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SER(2307hit)

1681-1700hit(2307hit)

  • A Suboptimal Receiver for WCDMA Systems

    Joong-Hoo PARK  Yong-Up LEE  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:3
      Page(s):
    667-672

    As a new type of a linear decorrelating receiver, the Pseudo-Decorrelator was presented for asynchronous code division multiple access systems in [6]. In this paper, the concept of the Pseudo-Decorrelator is extended to derive a suboptimal receiver for WCDMA uplink systems in a Rayleigh fading environment. Starting with the analysis of the multiple access components of the decision statistics, a non-square cross-correlation matrix for each bit is obtained. This cross-correlation matrix is then inverted and the inverted matrix is applied to the decision statistics obtained from a conventional receiver. Simulation results are presented for K-user systems over a Rayleigh fading channel. The effects of the synchronization errors, such as time delays and carrier phase errors, are also examined through simulations in this paper.

  • Investigation of Optical Magnetic Flux Generation in Superconductive YBCO Strip-Line

    Takashi FUKUI  Hironaru MURAKAMI  Masayoshi TONOUCHI  

     
    PAPER-Novel Devices and Device Physics

      Vol:
    E85-C No:3
      Page(s):
    818-822

    Femtosecond optical pulses were irradiated into a YBa2Cu3O7-δ strip-line of 400 µm in width in order to investigate the relationship between the laser beam power profile and the distribution of the optically generated magnetic fluxes. To homogenize the current distribution in the strip-line, a half of the strip-line was patterned into the ordered array structure of holes of 2 µm in diameter at an interval of 4 µm, and several experimental conditions were examined by changing the focal size of the pulsed laser beam at the sample surface. As a result, it was found out that the generated optical magnetic fluxes strongly depend on the power profile of the femtosecond optical pulses, and showed a possibility for the application to a laser beam profiler and the other optical devices.

  • Carrier-Suppressed Return-to-Zero Pulse Generation Using Mode-Locked Lasers for 40-Gbit/s Transmission

    Kenji SATO  Shoichiro KUWAHARA  Yutaka MIYAMOTO  Koichi MURATA  Hiroshi MIYAZAWA  

     
    PAPER

      Vol:
    E85-B No:2
      Page(s):
    410-415

    Phase-inversion between neighboring pulses appearing in carrier-suppressed return-to-zero pulses is effective in reducing the signal distortion due to chromatic dispersion and nonlinear effects. A generation method of the anti-phase pulses at 40 GHz is demonstrated by using semiconductor mode-locked lasers integrated with chirped gratings. Operation principle and pulse characteristics are described. Suppression of pulse distortion due to fiber dispersion is confirmed for generated anti-phase pulses. Repeaterless 150-km dispersion-shifted-fiber L-band transmission at 42.7 Gbit/s is demonstrated by using the pulse source.

  • Performance of SIC Scheme with an Activity-Based Disparity Estimation in a DS/CDMA System

    Chiho LEE  Gwangzeen KO  Kiseon KIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:2
      Page(s):
    495-501

    In this paper, we propose an activity-based estimation scheme to determine the received signal power disparity, that enhances the BER performance of the SIC scheme in a DS/CDMA system considering a practical voice activity factor, and compare BER performance with those of other schemes with or without estimation. Numerical analysis results show that the SIC scheme with the proposed activity-based estimation improves the BER performance compared with that without considering voice activity, and it approaches to that of the ideal estimation as the total number of concurrent users increases. In addition, the higher becomes the maximum attainable SNR, the better becomes the BER performance of the proposed activity-based estimation scheme.

  • Cryptanalysis and Improvement of Two Access Control Schemes with User Authentication in a Distributed Computer Network

    Narn-Yih LEE  

     
    PAPER-Applications of Information Security Techniques

      Vol:
    E85-D No:2
      Page(s):
    386-391

    In 1998, Jan and Tseng proposed two integrated schemes of user authentication and access control which can be used to implement a protection system in distributed computer systems. This paper will analyze the security of both schemes and show that an intruder can easily forge a login, be accepted and logged in as a legal user, and access system resources. We will then propose a modified scheme to withstand our proposed attacks.

  • Performance Evaluation of a Mobile Servicing Data Traffics in cdma2000

    BongDae CHOI  YeonHwa CHUNG  ChangSun CHOI  Jinmin CHUNG  

     
    PAPER-Wireless Communication Switching

      Vol:
    E85-B No:1
      Page(s):
    257-267

    The future third generation mobile communications system, named IMT-2000, is expected to provide mobile users with voice, high-rate data and their combined multi-media services with the same QoS as in the fixed networks. As a radio access standard for the IMT-2000, W-CDMA and cdma2000 have been selected in Europe and North America, respectively. In this paper, we present an analytic model of the cdma2000 data mobile servicing a connected data service. In order to do this, we first model the traffic generated at mobile by a discrete-time Batch Markovian Arrival Process (D-BMAP). Next, we model the Radio Link Protocol (RLP) Queue in the cdma2000 MAC protocol by a D-BMAP/D/1 queueing system with batch service and setup times. Finally, we analyze this queueing system and get the performance measures such as the mean delay and the loss probability. Analytic results are compared with simulation ones for accuracy.

  • Queue Management of RIO to Achieve High Throughput and Low Delay

    Yoshiaki HORI  Takeshi IKENAGA  Yuji OIE  

     
    PAPER

      Vol:
    E85-B No:1
      Page(s):
    63-69

    We have focused on the RIO queueing mechanism in statistical bandwidth allocation service, which uses AF-PHB. We have studied the parameterization of RIO to achieve both high throughput and low delay. We were able to parameterize RIO for that purpose in terms of both minth and maxp used in dropping OUT packets. Furthermore, we have also examined the parameterization regarding EWMA (Exponential Weighted Moving Average), i.e., weight factor wqout, and have shown that dropping OUT packets should depend upon the queue length without much delay unlike in RED. From our simulation results, we could see that our parameterization provided high throughput performance and also limited the queue length in a narrow range more effectively.

  • The Femtosecond Technology Project Pioneers Ultrafast Photonic Device Technology for the Next Generation Photonic Networking

    Fujio SAITO  

     
    INVITED PAPER-Femtosecond Technology for Photonic Networks

      Vol:
    E85-C No:1
      Page(s):
    106-116

    Recent activities on ultrafast photonic device technology development in the Femtosecond Technology Project sponsored by NEDO are introduced. Topics include management and control of the higher order dispersions of optical fibers, ultrafast mode-locked semiconductor laser, symmetric Mach-Zehnder type all-optical switch, ultrafast serial-to-parallel signal converter and sub-picosecond wavelength switch. Challenges towards novel ultrafast switching material systems are also described.

  • Weighted Proportional Fair Rate Allocations in a Differentiated Services Network

    Chun-Liang LEE  Chi-Wei CHEN  Yaw-Chung CHEN  

     
    PAPER

      Vol:
    E85-B No:1
      Page(s):
    116-128

    The differentiated services (Diffserv) architecture is a potential solution for providing quality of service (QoS) on the Internet. Most existing studies focus on providing service differentiation among few service classes. In this paper, we propose an approach which can achieve per-flow weighted fair rate allocation in a differentiated services network. Following the design philosophy of the Diffserv model, in the proposed approach core routers do not need to keep per-flow information. An edge router adjusts the transmission rate of a flow based on the feedback carried on control packets, which are inserted by the ingress edge router and returned by the egress edge router. Core routers periodically estimate the fair share rate of each virtual flow and mark the results in control packets. We use both simulations and analysis to evaluate the performance of the proposed approach. The analytical results show that our approach allows a system to converge to weighted fair rate allocations in limited time. Through the simulation results, we can further validate the analytical results, and demonstrate that better throughput can be achieved.

  • A Mode Hopping Suppressed External-Cavity Semiconductor Laser Using Feedback Control

    Shigenori MATTORI  Takanori SAITOH  Shigeru KINUGAWA  Hitoshi KAMEYAMA  Toshiyuki OZAKI  Junkichi SHIRONO  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    98-103

    We have demonstrated active mode hopping suppression in external-cavity semiconductor lasers including a diffraction grating as a wavelength-selecting device. The feedback control nullifies the difference between the oscillation wavelength and selected wavelength based on observed changes in diffraction angle. The control has suppressed mode hopping over a 7.5 times wider span than without control. And when combined with conventional mode hopping suppression techniques, mode-hop-free oscillation is achieved over 130 nm. Our approach can be used for most Littman-type external-cavity semiconductor lasers with simple attachments; it will be useful for continuous wavelength sweeping and for long-term wavelength stabilization.

  • Tunable External-Cavity Quantum-Well Laser Using Grating Coupler Integrated in Selectively Disordered Waveguide

    Naoyuki SHIMADA  Katsuhiro YUTANI  Masahiro UEMUKAI  Toshiaki SUHARA  Anders LARSSON  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    79-84

    A tunable external-cavity InGaAs/AlGaAs quantum-well laser using a grating coupler monolithically integrated in a selectively disordered waveguide is demonstrated. The laser consists of an amplifier with a narrow channel for lateral single-mode guiding and a tapered section, a grating coupler for output beam collimation and wavelength dispersion, and an external half mirror. Selective quantum-well disordering technique using SiO2 caps of different thicknesses and rapid thermal annealing was employed to reduce the passive waveguide loss in the grating coupler region. Loss reduction from 40 cm-1 to 3 cm-1 was accomplished. Resultant increase of the grating coupler efficiency and expansion of the effective aperture length led to significant improvement of the laser performances. The maximum output power of 105 mW and wide tuning range of 21.1 nm centered at 997 nm were obtained. The well collimated output beam of full diffraction angles at half maximum of 0.16 0.18 was obtained.

  • A Compact and Efficient Frequency Stabilization System for 35 mW Visible Laser Diode with Real-Time Power Spectral Density Monitor

    Shintaro HISATAKE  Yoshihiro KUROKAWA  Takahiro KAWAMOTO  Wakao SASAKI  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    58-63

    We propose a frequency stabilization system for laser diodes (LD's), in which the major parameters in the stabilization process can be controlled in respond to the monitored frequency noise characteristics in real-time basis. The performance of this system was also tested through stabilizing a 35 mW visible LD. The center frequency of the LD has been stabilized by negative electrical feedback based on Pound-Drever-Hall technique. The linewidth of the LD has been reduced by adapting optical feedback from resonant confocal Fabry-Perot (CFP) cavity. The controlling parameters, especially gain levels and frequency responses of the negative electrical feedback loop can be manipulated to remove the instantaneous frequency noise by monitoring power spectral density (PSD) of the frequency error signals in the real-time basis. The achieved PSD of frequency noise of a sample LD stabilized by the present system was less than 1105 Hz2/Hz for the Fourier frequency < 10 MHz. The reduced linewidth was estimated to be narrower than 400 kHz. The achieved minimum square root of the Allan variance was 3.910-11 at τ = 0.1 msec.

  • Temperature Characteristics of λ=1.3 µm GaInNAs/GaAs Quantum Well Lasers Grown by Chemical Beam Epitaxy

    Takeo KAGEYAMA  Tomoyuki MIYAMOTO  Shigeki MAKINO  Yoshihiko IKENAGA  Fumio KOYAMA  Kenichi IGA  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    71-78

    A GaInNAs alloy on GaAs substrate has been very promising for long-wavelength vertical-cavity surface-emitting lasers (VCSELs) as an active layer. In spite of many groups reported the excellent temperature characteristics of the threshold current of the GaInNAs/GaAs edge-emitting lasers, discussions of the temperature dependence of the lasing characteristics except threshold current is few. In this paper, temperature characteristics of GaInNAs lasers grown by chemical beam epitaxy (CBE) emitting at λ=1.27 µm and λ=1.30 µm were investigated in detail. The characteristic temperature (T0) ranging from 10 to 80 varies from 60 to 130 K and decreased with decreasing cavity length for shorter cavity (< 400 µm) devices. On the other hand, longer cavity (< 400 µm) devices show that the cavity length does not affect so much to T0. The internal losses did not increase with increasing temperature. On the other hand, internal quantum efficiencies decreased with increasing temperature. It is considered that non-radiative recombination center with large temperature dependence may influence the decrease of the internal quantum efficiency due to the insufficient crystal quality of GaInNAs layer. The transparency current densities were unchanged for all temperature range, however, the gain constants decreased with increasing temperature. Thus, the decrease of the gain constant is considered to be due to decreasing of gain. Unchanged both transparency current density and internal loss may also express that these temperature characteristics were not induced by carrier overflow but be done by decreasing of the gain. From the results, it is considered that the temperature dependence of the gain originated from the Fermi-Dirac distribution of carriers was dominant for the temperature characteristics of GaInNAs/GaAs lasers. Due to the temperature dependence on the gain, the T0 decreases with increasing mirror loss.

  • Thermal Response Analysis of a Tunable Laser Diode Using a Mode Density Method

    Mitsuteru ISHIKAWA  Hiroyuki ISHII  Yuzo YOSHIKUNI  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    85-92

    The thermal response of a tunable laser is analyzed by using a mode density method based on a Fourier-Laplace analysis. This method introduces a mode density function for mode distribution of the Fourier-Laplace transform and gives temperature time-dependency in an integral form instead of an infinite weighted summation. When symmetric structures are assumed, the mode density method gives the transient thermal response in a simple form: error functions (spherical-symmetry case) and exponential integral functions (cylindrical-symmetry case). The cylindrical-symmetry analysis was extended to the noncylindrical-symmetry model and the thermal response of the tunable laser was calculated by the mode density method. The result shows good agreement with a Fourier-Laplace analysis (deviation 2%) and experimental results. As a rough estimation, the thermal response of the laser is in proportion to the logarithm of time in some range that depends on the chip and tuning-section size of the laser.

  • Ultrahigh-Speed OTDM Transmission beyond 1 Tera Bit-Per-Second Using a Femtosecond Pulse Train

    Masataka NAKAZAWA  Takashi YAMAMOTO  Koichi Robert TAMURA  

     
    INVITED PAPER-OTDM Transmission System, Optical Regeneration and Coding

      Vol:
    E85-C No:1
      Page(s):
    117-125

    Progress on a single wavelength channel OTDM terabit/s transmission is described. In particular, we focus on 1.28 Tbit/s OTDM transmission over 70 km which we realized recently. A pre-chirping technique using a high speed phase modulator is emphasized to simultaneously compensate for third- and fourth-order dispersion. The input pulse width was 380 fs, and the pulse broadening after a 70 km transmission was as small as 20 fs. All 128 channels time-division-demultiplexed to 10 Gbit/s had a bit error rate of less than 110-9, in which we employed a lot of new technique for pulse generation, dispersion compensation and demultiplexing. These techniques help pave the path for OTDM technology of the 21 century.

  • Quantitative Analysis for Intracellular Distribution of a Photosensitizer Using Confocal Laser Scanning Microscope

    Tomokazu NAGAO  Kazuki MATSUZAKI  Miho TAKAHASHI  Yoshiharu IMAZEKI  Haruyuki MINAMITANI  

     
    PAPER-Cellular Imaging

      Vol:
    E85-D No:1
      Page(s):
    152-159

    Confocal laser scanning microscope (CLSM) is capable of delivering a high axial resolution, and with this instrument even thin layers of cells can be imaged in good quality. Therefore, intracellular uptake and distribution properties of photosensitizer zinc coproporphyrin III tetrasodium salt (Zn CP-III) in human lung small cell carcinoma (Ms-1) were examined by using CLSM. In particular, the uptake of Zn CP-III in cytoplasm, plasma membrane, and nucleus was individually evaluated for the first time from fluorescence images obtained by CLSM. The results show that the Zn CP-III content in three cellular areas correlates with extracellular Zn CP-III concentration and time of incubation with Zn CP-III. Furthermore, it was found that the cytoplasmic fluorescence was approximately two times higher than that in the nucleus under all uptake conditions. In addition, cellular accumulation of Zn CP-III was compared with photodynamic cytotoxicity. The photocytotoxicity was to a great extent dependent on the uptake of the photosensitizer. The damaged site of Ms-1 cells induced by photodynamic therapy was plasma membrane. However, the content of Zn CP-III accumulated in cytoplasm was the highest among the three areas, implying that, besides the direct damage on plasma membrane, an oxidative damage to cellular component arose from the cytoplasmic Zn CP-III may also play an important role in photocytotoxicity. The quantitative information obtained in this study will be useful for further investigation of the photocytotoxicity as well as the uptake mechanism of photosensitizer.

  • AlGaAs High-Power Laser Diode with Window-Mirror Structure by Intermixing of Multi-Quantum Well for CD-R

    Tetsuya YAGI  Yoshihisa TASHIRO  Shinji ABE  Harumi NISHIGUCHI  Yuji OHKURA  Akihiro SHIMA  Etsuji OMURA  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    52-57

    785 nm (AlGaAs) laser diode (LD) with a window-mirror structure is demonstrated to be a potential candidate as a highly reliable light source of CD-R. The intermixing of a multi-quantum well structure by silicon implantation is used to form the window-mirror structure. Carbon is adopted as an acceptor because of its low thermal diffusion constant in crystals. As a result, the window-mirror-structure 785 nm AlGaAs LDs with ordinary far field patterns suitable for the actual CD-R drives have shown stable single lateral mode operation up to 250 mW. A mirror degradation level is significantly increased by the window-mirror structure. The pulsed operation current at 160 mW, 70 of the carbon doped LD is reduced by about 15% from that of zinc doped one. Highly reliable 160 mW pulsed operation is also realized at 70. This LD believed to be suited for the next generation high-speed (16-24x) CD-R drives necessitating 160 mW class LD.

  • Progress in Self-Assembled Quantum Dots for Optoelectronic Device Application

    Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    37-44

    Optical properties and growth of self-assembled quantum dots (SAQDs) for optoelectronic device applications are discussed. After briefly reviewing the history of research on QD lasers, we discuss growth of InAs SAQDs including the light emission at the wavelength of 1.52-µm with a narrow linewidth (22 meV) and the area-controlled growth which demonstrates formation of SAQDs in selected local areas on a growth plane using a SiO2 mask with MOCVD growth. Then properties of the InGaAs AQDs are investigated by the near-field photoluminescence excitation spectroscopy which reveals gradually increasing continuum absorption connected with the two-dimensional-like (2D-like) wetting layer, resulting in faster relaxation of electrons due to a crossover between 0D and 2D character in the density of states. In the coherent excitation spectroscopy, the decoherence time is determined to be about 15 ps, which is well explained by the phonon induced relaxation mechanism in the SAQDs. Finally, nitride-based SAQDs and perspective of QD optical devices are also discussed.

  • Fluorescence Image Analysis for Quantification of Reactive Oxygen Species Derived from Monocytes Activated by Photochemical Reaction

    Miho TAKAHASHI  Tomokazu NAGAO  Yoshiharu IMAZEKI  Kazuki MATSUZAKI  Haruyuki MINAMITANI  

     
    PAPER-Cellular Imaging

      Vol:
    E85-D No:1
      Page(s):
    160-166

    This study attempts to demonstrate that activated leukocytes are involved in vascular shut down effect (VSD) in photodynamic therapy (PDT). Hydrogen peroxide (H2O2), a reactive oxygen specie (ROS) that is found in monocytes, was visualized under a confocal laser scanning microscope, and ROS formation was quantified by fluorescence image analysis. The fluorescence intensity was expressed as a gray level graded from 0 to 255. Only the fluorescence derived from monocytes that had ZnCP-III incorporated and were irradiated with an HeNe laser caused increases in the fluorescence distribution over time, while no change of distribution was observed in three other conditions (only Zn CP-III added, only HeNe laser irradiation, or non-treated). The result indicates that the photochemical reaction induced by excitation of a photosensitizer, and ROS was derived from the reaction-stimulated monocytes. The activated monocytes generated ROS themselves and H2O2 was visualized by the DCFH fluorescence method. In conclusion, the result clearly shows that activated monocytes are involved in the VSD effect.

  • Highly Reliable Mode-Locked Semiconductor Lasers

    Hiroyuki YOKOYAMA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    27-36

    Very reliable mode-locked semiconductor lasers have been developed. These devices provide high signal-to-noise ratio optical clock pulses of a few picoseconds temporal width in the 1.5-micrometer wavelength region. Potential applications of these lasers for high-bit-rate optical communication systems operating at over 40 Gbps including all-optical signal processing, and for very high-speed measurement systems are described.

1681-1700hit(2307hit)