The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

821-840hit(16314hit)

  • Analysis of Signal Distribution in ASE-Limited Optical On-Off Keying Direct-Detection Systems

    Hiroki KAWAHARA  Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1386-1394

    This paper provides on a theoretical and numerical study of the probability density function (PDF) of the on-off keying (OOK) signals in ASE-limited systems. We present simple closed formulas of PDFs for the optical intensity and the received baseband signal. To confirm the validity of our model, the calculation results yielded by the proposed formulas are compared with those of numerical simulations and the conventional Gaussian model. Our theoretical and numerical results confirm that the signal distribution differs from a Gaussian profile. It is also demonstrated that our model can properly evaluate the signal distribution and the resultant BER performance, especially for systems with an optical bandwidth close to the receiver baseband width.

  • Flexible Bayesian Inference by Weight Transfer for Robust Deep Neural Networks

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/28
      Vol:
    E104-D No:11
      Page(s):
    1981-1991

    Adversarial attacks are viewed as a danger to Deep Neural Networks (DNNs), which reveal a weakness of deep learning models in security-critical applications. Recent findings have been presented adversarial training as an outstanding defense method against adversaries. Nonetheless, adversarial training is a challenge with respect to big datasets and large networks. It is believed that, unless making DNN architectures larger, DNNs would be hard to strengthen the robustness to adversarial examples. In order to avoid iteratively adversarial training, our algorithm is Bayes without Bayesian Learning (BwoBL) that performs the ensemble inference to improve the robustness. As an application of transfer learning, we use learned parameters of pretrained DNNs to build Bayesian Neural Networks (BNNs) and focus on Bayesian inference without costing Bayesian learning. In comparison with no adversarial training, our method is more robust than activation functions designed to enhance adversarial robustness. Moreover, BwoBL can easily integrate into any pretrained DNN, not only Convolutional Neural Networks (CNNs) but also other DNNs, such as Self-Attention Networks (SANs) that outperform convolutional counterparts. BwoBL is also convenient to apply to scaling networks, e.g., ResNet and EfficientNet, with better performance. Especially, our algorithm employs a variety of DNN architectures to construct BNNs against a diversity of adversarial attacks on a large-scale dataset. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our proposal in ResNets, SANs, and EfficientNets increase by 58.18% top-5 accuracy on average, which are combined with naturally pretrained ResNets, SANs, and EfficientNets. This enhancement is 62.26% on average below l2 norm C&W attack. The combination of our proposed method with pretrained EfficientNets on both natural and adversarial images (EfficientNet-ADV) drastically boosts the robustness resisting PGD and C&W attacks without additional training. Our EfficientNet-ADV-B7 achieves the cutting-edge top-5 accuracy, which is 92.14% and 94.20% on adversarial ImageNet generated by powerful PGD and C&W attacks, respectively.

  • A Design of Automated Vulnerability Information Management System for Secure Use of Internet-Connected Devices Based on Internet-Wide Scanning Methods

    Taeeun KIM  Hwankuk KIM  

     
    PAPER

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1805-1813

    Any Internet-connected device is vulnerable to being hacked and misused. Hackers can find vulnerable IoT devices, infect malicious codes, build massive IoT botnets, and remotely control IoT devices through C&C servers. Many studies have been attempted to apply various security features on IoT devices to prevent IoT devices from being exploited by attackers. However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost devices and have limitations on performance of processing and memory, making it difficult to install heavy security functions. Instead of access to applying security functions on IoT devices, Internet-wide scanning (e.g., Shodan) studies have been attempted to quickly discover and take security measures massive IoT devices with weak security. Over the Internet, scanning studies remotely also exist realistic limitations such as low accuracy in analyzing security vulnerabilities due to a lack of device information or filtered by network security devices. In this paper, we propose a system for remotely collecting information from Internet-connected devices and using scanning techniques to identify and manage vulnerability information from IoT devices. The proposed system improves the open-source Zmap engine to solve a realistic problem when attempting to scan through real Internet. As a result, performance measurements show equal or superior results compared to previous Shodan, Zmap-based scanning.

  • Verifiable Credential Proof Generation and Verification Model for Decentralized SSI-Based Credit Scoring Data

    Kang Woo CHO  Byeong-Gyu JEONG  Sang Uk SHIN  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1857-1868

    The continuous development of the mobile computing environment has led to the emergence of fintech to enable convenient financial transactions in this environment. Previously proposed financial identity services mostly adopted centralized servers that are prone to single-point-of-failure problems and performance bottlenecks. Blockchain-based self-sovereign identity (SSI), which emerged to address this problem, is a technology that solves centralized problems and allows decentralized identification. However, the verifiable credential (VC), a unit of SSI data transactions, guarantees unlimited right to erasure for self-sovereignty. This does not suit the specificity of the financial transaction network, which requires the restriction of the right to erasure for credit evaluation. This paper proposes a model for VC generation and revocation verification for credit scoring data. The proposed model includes double zero knowledge - succinct non-interactive argument of knowledge (zk-SNARK) proof in the VC generation process between the holder and the issuer. In addition, cross-revocation verification takes place between the holder and the verifier. As a result, the proposed model builds a trust platform among the holder, issuer, and verifier while maintaining the decentralized SSI attributes and focusing on the VC life cycle. The model also improves the way in which credit evaluation data are processed as VCs by granting opt-in and the special right to erasure.

  • An Efficient Public Verifiable Certificateless Multi-Receiver Signcryption Scheme for IoT Environments

    Dae-Hwi LEE  Won-Bin KIM  Deahee SEO  Im-Yeong LEE  

     
    PAPER

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:11
      Page(s):
    1869-1879

    Lightweight cryptographic systems for services delivered by the recently developed Internet of Things (IoT) are being continuously researched. However, existing Public Key Infrastructure (PKI)-based cryptographic algorithms are difficult to apply to IoT services delivered using lightweight devices. Therefore, encryption, authentication, and signature systems based on Certificateless Public Key Cryptography (CL-PKC), which are lightweight because they do not use the certificates of existing PKI-based cryptographic algorithms, are being studied. Of the various public key cryptosystems, signcryption is efficient, and ensures integrity and confidentiality. Recently, CL-based signcryption (CL-SC) schemes have been intensively studied, and a multi-receiver signcryption (MRSC) protocol for environments with multiple receivers, i.e., not involving end-to-end communication, has been proposed. However, when using signcryption, confidentiality and integrity may be violated by public key replacement attacks. In this paper, we develop an efficient CL-based MRSC (CL-MRSC) scheme using CL-PKC for IoT environments. Existing signcryption schemes do not offer public verifiability, which is required if digital signatures are used, because only the receiver can verify the validity of the message; sender authenticity is not guaranteed by a third party. Therefore, we propose a CL-MRSC scheme in which communication participants (such as the gateways through which messages are transmitted) can efficiently and publicly verify the validity of encrypted messages.

  • Influence of Access to Reading Material during Concept Map Recomposition in Reading Comprehension and Retention

    Pedro GABRIEL FONTELES FURTADO  Tsukasa HIRASHIMA  Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  

     
    PAPER-Educational Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1941-1950

    This study investigated the influence of reading time while building a closed concept map on reading comprehension and retention. It also investigated the effect of having access to the text during closed concept map creation on reading comprehension and retention. Participants from Amazon Mechanical Turk (N =101) read a text, took an after-text test, and took part in one of three conditions, “Map & Text”, “Map only”, and “Double Text”, took an after-activity test, followed by a two-week retention period and then one final delayed test. Analysis revealed that higher reading times were associated with better reading comprehension and better retention. Furthermore, when comparing “Map & Text” to the “Map only” condition, short-term reading comprehension was improved, but long-term retention was not improved. This suggests that having access to the text while building closed concept maps can improve reading comprehension, but long term learning can only be improved if students invest time accessing both the map and the text.

  • DNN-Based Low-Musical-Noise Single-Channel Speech Enhancement Based on Higher-Order-Moments Matching

    Satoshi MIZOGUCHI  Yuki SAITO  Shinnosuke TAKAMICHI  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/07/30
      Vol:
    E104-D No:11
      Page(s):
    1971-1980

    We propose deep neural network (DNN)-based speech enhancement that reduces musical noise and achieves better auditory impressions. The musical noise is an artifact generated by nonlinear signal processing and negatively affects the auditory impressions. We aim to develop musical-noise-free speech enhancement methods that suppress the musical noise generation and produce perceptually-comfortable enhanced speech. DNN-based speech enhancement using a soft mask achieves high noise reduction but generates musical noise in non-speech regions. Therefore, first, we define kurtosis matching for DNN-based low-musical-noise speech enhancement. Kurtosis is the fourth-order moment and is known to correlate with the amount of musical noise. The kurtosis matching is a penalty term of the DNN training and works to reduce the amount of musical noise. We further extend this scheme to standardized-moment matching. The extended scheme involves using moments whose orders are higher than kurtosis and generalizes the conventional musical-noise-free method based on kurtosis matching. We formulate standardized-moment matching and explore how effectively the higher-order moments reduce the amount of musical noise. Experimental evaluation results 1) demonstrate that kurtosis matching can reduce musical noise without negatively affecting noise suppression and 2) newly reveal that the sixth-moment matching also achieves low-musical-noise speech enhancement as well as kurtosis matching.

  • Smaller Residual Network for Single Image Depth Estimation

    Andi HENDRA  Yasushi KANAZAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/17
      Vol:
    E104-D No:11
      Page(s):
    1992-2001

    We propose a new framework for estimating depth information from a single image. Our framework is relatively small and straightforward by employing a two-stage architecture: a residual network and a simple decoder network. Our residual network in this paper is a remodeled of the original ResNet-50 architecture, which consists of only thirty-eight convolution layers in the residual block following by pair of two up-sampling and layers. While the simple decoder network, stack of five convolution layers, accepts the initial depth to be refined as the final output depth. During training, we monitor the loss behavior and adjust the learning rate hyperparameter in order to improve the performance. Furthermore, instead of using a single common pixel-wise loss, we also compute loss based on gradient-direction, and their structure similarity. This setting in our network can significantly reduce the number of network parameters, and simultaneously get a more accurate image depth map. The performance of our approach has been evaluated by conducting both quantitative and qualitative comparisons with several prior related methods on the publicly NYU and KITTI datasets.

  • Detecting Depression from Speech through an Attentive LSTM Network

    Yan ZHAO  Yue XIE  Ruiyu LIANG  Li ZHANG  Li ZHAO  Chengyu LIU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2019-2023

    Depression endangers people's health conditions and affects the social order as a mental disorder. As an efficient diagnosis of depression, automatic depression detection has attracted lots of researcher's interest. This study presents an attention-based Long Short-Term Memory (LSTM) model for depression detection to make full use of the difference between depression and non-depression between timeframes. The proposed model uses frame-level features, which capture the temporal information of depressive speech, to replace traditional statistical features as an input of the LSTM layers. To achieve more multi-dimensional deep feature representations, the LSTM output is then passed on attention layers on both time and feature dimensions. Then, we concat the output of the attention layers and put the fused feature representation into the fully connected layer. At last, the fully connected layer's output is passed on to softmax layer. Experiments conducted on the DAIC-WOZ database demonstrate that the proposed attentive LSTM model achieves an average accuracy rate of 90.2% and outperforms the traditional LSTM network and LSTM with local attention by 0.7% and 2.3%, respectively, which indicates its feasibility.

  • Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation

    Naoki HATTORI  Jun SHIOMI  Yutaka MASUDA  Tohru ISHIHARA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1477-1487

    With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.

  • A Two-Stage Hardware Trojan Detection Method Considering the Trojan Probability of Neighbor Nets

    Kento HASEGAWA  Tomotaka INOUE  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1516-1525

    Due to the rapid growth of the information industry, various Internet of Things (IoT) devices have been widely used in our daily lives. Since the demand for low-cost and high-performance hardware devices has increased, malicious third-party vendors may insert malicious circuits into the products to degrade their performance or to leak secret information stored at the devices. The malicious circuit surreptitiously inserted into the hardware products is known as a ‘hardware Trojan.’ How to detect hardware Trojans becomes a significant concern in recent hardware production. In this paper, we propose a hardware Trojan detection method that employs two-stage neural networks and effectively utilizes the Trojan probability of neighbor nets. At the first stage, the 11 Trojan features are extracted from the nets in a given netlist, and then we estimate the Trojan probability that shows the probability of the Trojan nets. At the second stage, we learn the Trojan probability of the neighbor nets for each net in the netlist and classify the nets into a set of normal nets and Trojan ones. The experimental results demonstrate that the average true positive rate becomes 83.6%, and the average true negative rate becomes 96.5%, which is sufficiently high compared to the existing methods.

  • Analysis and Acceleration of the Quadratic Knapsack Problem on an Ising Machine Open Access

    Matthieu PARIZY  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1526-1535

    The binary quadratic knapsack problem (QKP) aims at optimizing a quadratic cost function within a single knapsack. Its applications and difficulty make it appealing for various industrial fields. In this paper we present an efficient strategy to solve the problem by modeling it as an Ising spin model using an Ising machine to search for its ground state which translates to the optimal solution of the problem. Secondly, in order to facilitate the search, we propose a novel technique to visualize the landscape of the search and demonstrate how difficult it is to solve QKP on an Ising machine. Finally, we propose two software solution improvement algorithms to efficiently solve QKP on an Ising machine.

  • A Synthesis Method Based on Multi-Stage Optimization for Power-Efficient Integrated Optical Logic Circuits

    Ryosuke MATSUO  Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/18
      Vol:
    E104-A No:11
      Page(s):
    1546-1554

    Optical logic circuits based on integrated nanophotonics attract significant interest due to their ultra-high-speed operation. However, the power dissipation of conventional optical logic circuits is exponential to the number of inputs of target logic functions. This paper proposes a synthesis method reducing power dissipation to a polynomial order of the number of inputs while exploiting the high-speed nature. Our method divides the target logic function into multiple sub-functions with Optical-to-Electrical (OE) converters. Each sub-function has a smaller number of inputs than that of the original function, which enables to exponentially reduce the power dissipated by an optical logic circuit representing the sub-function. The proposed synthesis method can mitigate the OE converter delay overhead by parallelizing sub-functions. We apply the proposed synthesis method to the ISCAS'85 benchmark circuits. The power consumption of the conventional circuits based on the Binary Decision Diagram (BDD) is at least three orders of magnitude larger than that of the optical logic circuits synthesized by the proposed method. The proposed method reduces the power consumption to about 100mW. The delay of almost all the circuits synthesized by the proposed method is kept less than four times the delay of the conventional BDD-based circuit.

  • An Anomalous Behavior Detection Method Utilizing Extracted Application-Specific Power Behaviors

    Kazunari TAKASAKI  Ryoichi KIDA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1555-1565

    With the widespread use of Internet of Things (IoT) devices in recent years, we utilize a variety of hardware devices in our daily life. On the other hand, hardware security issues are emerging. Power analysis is one of the methods to detect anomalous behaviors, but it is hard to apply it to IoT devices where an operating system and various software programs are running. In this paper, we propose an anomalous behavior detection method for an IoT device by extracting application-specific power behaviors. First, we measure power consumption of an IoT device, and obtain the power waveform. Next, we extract an application-specific power waveform by eliminating a steady factor from the obtained power waveform. Finally, we extract feature values from the application-specific power waveform and detect an anomalous behavior by utilizing the local outlier factor (LOF) method. We conduct two experiments to show how our proposed method works: one runs three application programs and an anomalous application program randomly and the other runs three application programs in series and an anomalous application program very rarely. Application programs on both experiments are implemented on a single board computer. The experimental results demonstrate that the proposed method successfully detects anomalous behaviors by extracting application-specific power behaviors, while the existing approaches cannot.

  • Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region

    Shoya SONODA  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1566-1576

    A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • Practical Integral Distinguishers on SNOW 3G and KCipher-2

    Jin HOKI  Kosei SAKAMOTO  Kazuhiko MINEMATSU  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1603-1611

    In this paper, we explore the security against integral attacks on well-known stream ciphers SNOW 3G and KCipher-2. SNOW 3G is the core of the 3GPP confidentiality and integrity algorithms UEA2 and UIA2, and KCipher-2 is a standard algorithm of ISO/IEC 18033-4 and CRYPTREC. Specifically, we investigate the propagation of the division property inside SNOW 3G and KCipher-2 by the Mixed-Integer Linear Programming to efficiently find an integral distinguisher. As a result, we present a 7-round integral distinguisher with 23 chosen IVs for KCipher-2. As far as we know, this is the first attack on a reduced variant of KCipher-2 by the third party. In addition, we present a 13-round integral distinguisher with 27 chosen IVs for SNOW 3G, whose time/data complexity is half of the previous best attack by Biryukov et al.

  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • Constrained Design of FIR Filters with Sparse Coefficients

    Tatsuki ITASAKA  Ryo MATSUOKA  Masahiro OKUDA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-A No:11
      Page(s):
    1499-1508

    We propose an algorithm for the constrained design of FIR filters with sparse coefficients. In general filter design approaches, as the length of the filter increases, the number of multipliers used to construct the filter increases. This is a serious problem, especially in two-dimensional FIR filter designs. The FIR filter coefficients designed by the least-squares method with peak error constraint are optimal in the sense of least-squares within a given order, but not necessarily optimal in terms of constructing a filter that meets the design specification under the constraints on the number of coefficients. That is, a higher-order filter with several zero coefficients can construct a filter that meets the specification with a smaller number of multipliers. We propose a two-step approach to design constrained sparse FIR filters. Our method minimizes the number of non-zero coefficients while the frequency response of the filter that meets the design specification. It achieves better performance in terms of peak error than conventional constrained least-squares designs with the same or higher number of multipliers in both one-dimensional and two-dimensional filter designs.

821-840hit(16314hit)