The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

801-820hit(16314hit)

  • Movie Map for Virtual Exploration in a City

    Kiyoharu AIZAWA  

     
    INVITED PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-D No:1
      Page(s):
    38-45

    This paper introduces our work on a Movie Map, which will enable users to explore a given city area using 360° videos. Visual exploration of a city is always needed. Nowadays, we are familiar with Google Street View (GSV) that is an interactive visual map. Despite the wide use of GSV, it provides sparse images of streets, which often confuses users and lowers user satisfaction. Forty years ago, a video-based interactive map was created - it is well-known as Aspen Movie Map. Movie Map uses videos instead of sparse images and seems to improve the user experience dramatically. However, Aspen Movie Map was based on analog technology with a huge effort and never built again. Thus, we renovate the Movie Map using state-of-the-art technology. We build a new Movie Map system with an interface for exploring cities. The system consists of four stages; acquisition, analysis, management, and interaction. After acquiring 360° videos along streets in target areas, the analysis of videos is almost automatic. Frames of the video are localized on the map, intersections are detected, and videos are segmented. Turning views at intersections are synthesized. By connecting the video segments following the specified movement in an area, we can watch a walking view along a street. The interface allows for easy exploration of a target area. It can also show virtual billboards in the view.

  • Parameter Estimation of Markovian Arrivals with Utilization Data

    Chen LI  Junjun ZHENG  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/07/08
      Vol:
    E105-B No:1
      Page(s):
    1-10

    Utilization data (a kind of incomplete data) is defined as the fraction of a fixed period in which the system is busy. In computer systems, utilization data is very common and easily observable, such as CPU utilization. Unlike inter-arrival times and waiting times, it is more significant to consider the parameter estimation of transaction-based systems with utilization data. In our previous work [7], a novel parameter estimation method using utilization data for an Mt/M/1/K queueing system was presented to estimate the parameters of a non-homogeneous Poisson process (NHPP). Since NHPP is classified as a simple counting process, it may not fit actual arrival streams very well. As a generalization of NHPP, Markovian arrival process (MAP) takes account of the dependency between consecutive arrivals and is often used to model complex, bursty, and correlated traffic streams. In this paper, we concentrate on the parameter estimation of an MAP/M/1/K queueing system using utilization data. In particular, the parameters are estimated by using maximum likelihood estimation (MLE) method. Numerical experiments on real utilization data validate the proposed approach and evaluate the effective traffic intensity of the arrival stream of MAP/M/1/K queueing system. Besides, three kinds of utilization datasets are created from a simulation to assess the effects of observed time intervals on both estimation accuracy and computational cost. The numerical results show that MAP-based approach outperforms the exiting method in terms of both the estimation accuracy and computational cost.

  • Tighter Reduction for Lattice-Based Multisignature Open Access

    Masayuki FUKUMITSU  Shingo HASEGAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:12
      Page(s):
    1685-1697

    Multisignatures enable multiple users to sign a message interactively. Many instantiations are proposed for multisignatures, however, most of them are quantum-insecure, because these are based on the integer factoring assumption or the discrete logarithm assumption. Although there exist some constructions based on the lattice problems, which are believed to be quantum-secure, their security reductions are loose. In this paper, we aim to improve the security reduction of lattice-based multisignature schemes concerning tightness. Our basic strategy is combining the multisignature scheme proposed by El Bansarkhani and Sturm with the lattice-based signature scheme by Abdalla, Fouque, Lyubashevsky, and Tibouchi which has a tight security reduction from the Ring-LWE (Ring Learning with Errors) assumption. Our result shows that proof techniques for standard signature schemes can be applied to multisignature schemes, then we can improve the polynomial loss factor concerning the Ring-LWE assumption. Our second result is to address the problem of security proofs of existing lattice-based multisignature schemes pointed out by Damgård, Orlandi, Takahashi, and Tibouchi. We employ a new cryptographic assumption called the Rejected-Ring-LWE assumption, to complete the security proof.

  • Semantic Guided Infrared and Visible Image Fusion

    Wei WU  Dazhi ZHANG  Jilei HOU  Yu WANG  Tao LU  Huabing ZHOU  

     
    LETTER-Image

      Pubricized:
    2021/06/10
      Vol:
    E104-A No:12
      Page(s):
    1733-1738

    In this letter, we propose a semantic guided infrared and visible image fusion method, which can train a network to fuse different semantic objects with different fusion weights according to their own characteristics. First, we design the appropriate fusion weights for each semantic object instead of the whole image. Second, we employ the semantic segmentation technology to obtain the semantic region of each object, and generate special weight maps for the infrared and visible image via pre-designed fusion weights. Third, we feed the weight maps into the loss function to guide the image fusion process. The trained fusion network can generate fused images with better visual effect and more comprehensive scene representation. Moreover, we can enhance the modal features of various semantic objects, benefiting subsequent tasks and applications. Experiment results demonstrate that our method outperforms the state-of-the-art in terms of both visual effect and quantitative metrics.

  • Radar Emitter Identification Based on Auto-Correlation Function and Bispectrum via Convolutional Neural Network

    Zhiling XIAO  Zhenya YAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/10
      Vol:
    E104-B No:12
      Page(s):
    1506-1513

    This article proposes to apply the auto-correlation function (ACF), bispectrum analysis, and convolutional neural networks (CNN) to implement radar emitter identification (REI) based on intrapulse features. In this work, we combine ACF with bispectrum for signal feature extraction. We first calculate the ACF of each emitter signal, and then the bispectrum of the ACF and obtain the spectrograms. The spectrum images are taken as the feature maps of the radar emitters and fed into the CNN classifier to realize automatic identification. We simulate signal samples of different modulation types in experiments. We also consider the feature extraction method directly using bispectrum analysis for comparison. The simulation results demonstrate that by combining ACF with bispectrum analysis, the proposed scheme can attain stronger robustness to noise, the spectrograms of our approach have more pronounced features, and our approach can achieve better identification performance at low signal-to-noise ratios.

  • New Binary Quantum Codes Derived from Quasi-Twisted Codes with Hermitian Inner Product

    Yu YAO  Yuena MA  Jingjie LV  Hao SONG  Qiang FU  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/28
      Vol:
    E104-A No:12
      Page(s):
    1718-1722

    In this paper, a special class of two-generator quasi-twisted (QT) codes with index 2 will be presented. We explore the algebraic structure of the class of QT codes and the form of their Hermitian dual codes. A sufficient condition for self-orthogonality with Hermitian inner product is derived. Using the class of Hermitian self-orthogonal QT codes, we construct two new binary quantum codes [[70, 42, 7]]2, [[78, 30, 10]]2. According to Theorem 6 of Ref.[2], we further can get 9 new binary quantum codes. So a total of 11 new binary quantum codes are obtained and there are 10 quantum codes that can break the quantum Gilbert-Varshamov (GV) bound.

  • Lempel-Ziv Factorization in Linear-Time O(1)-Workspace for Constant Alphabets

    Weijun LIU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/30
      Vol:
    E104-D No:12
      Page(s):
    2145-2153

    Computing the Lempel-Ziv Factorization (LZ77) of a string is one of the most important problems in computer science. Nowadays, it has been widely used in many applications such as data compression, text indexing and pattern discovery, and already become the heart of many file compressors like gzip and 7zip. In this paper, we show a linear time algorithm called Xone for computing the LZ77, which has the same space requirement with the previous best space requirement for linear time LZ77 factorization called BGone. Xone greatly improves the efficiency of BGone. Experiments show that the two versions of Xone: XoneT and XoneSA are about 27% and 31% faster than BGoneT and BGoneSA, respectively.

  • Design of Ultra-Thin Wave Absorber with Square Patch Array Considering Electromagnetic Coupling between Patch Array and Back-Metal

    Sota MATSUMOTO  Ryosuke SUGA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    681-684

    In this paper, an ultra-thin wave absorber using a resistive patch array closely-placed in front of a back-metal is designed. The positively large susceptance is required for the patch array to cancel out the negatively large input susceptance of the short-circuited ultra-thin spacer behind the array. It is found that the array needs the gap of 1mm, sheet resistance of less than 20Ω/sq. and patch width of more than 15mm to obtain the zero input susceptance of the absorber with the 1/30 wavelength spacer. Moreover, these parameters were designed considering the electromagnetic coupling between the array and back-metal, and the square patch array absorbers with the thickness from 1/30 to 1/150 wavelength were designed.

  • CLAHE Implementation and Evaluation on a Low-End FPGA Board by High-Level Synthesis

    Koki HONDA  Kaijie WEI  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER

      Pubricized:
    2021/07/12
      Vol:
    E104-D No:12
      Page(s):
    2048-2056

    Automobile companies have been trying to replace side mirrors of cars with small cameras for reducing air resistance. It enables us to apply some image processing to improve the quality of the image. Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of such techniques to improve the quality of the image for the side mirror camera, which requires a large computation performance. Here, an implementation method of CLAHE on a low-end FPGA board by high-level synthesis is proposed. CLAHE has two main processing parts: cumulative distribution function (CDF) generation, and bilinear interpolation. During the CDF generation, the effect of increasing loop initiation interval can be greatly reduced by placing multiple Processing Elements (PEs). and during the interpolation, latency and BRAM usage were reduced by revising how to hold CDF and calculation method. Finally, by connecting each module with streaming interfaces, using data flow pragmas, overlapping processing, and hiding data transfer, our HLS implementation achieved a comparable result to that of HDL. We parameterized the components of the algorithm so that the number of tiles and the size of the image can be easily changed. The source code for this research can be downloaded from https://github.com/kokihonda/fpga_clahe.

  • Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ Open Access

    Zhiyuan JIANG  Yijie HUANG  Shunqing ZHANG  Shugong XU  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1465-1478

    In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.

  • Weighted PCA-LDA Based Color Quantization Method Suppressing Saturation Decrease

    Seiichi KOJIMA  Momoka HARADA  Yoshiaki UEDA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/06/02
      Vol:
    E104-A No:12
      Page(s):
    1728-1732

    In this letter, we propose a new color quantization method suppressing saturation decrease. In the proposed method, saturation-based weight and intensity-based weight are used so that vivid colors are selected as the representative colors preferentially. Experiments show that the proposed method tends to select vivid colors even if they occupy only a small area in the image.

  • Achieving Ultra-Low Latency for Network Coding-Aware Multicast Fronthaul Transmission in Cache-Enabled C-RANs

    Qinglong LIU  Chongfu ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/06/15
      Vol:
    E104-A No:12
      Page(s):
    1723-1727

    In cloud radio access networks (C-RANs) architecture, the Hybrid Automatic Repeat Request (HARQ) protocol imposes a strict limit on the latency between the baseband unit (BBU) pool and the remote radio head (RRH), which is a key challenge in the adoption of C-RANs. In this letter, we propose a joint edge caching and network coding strategy (ENC) in the C-RANs with multicast fronthaul to improve the performance of HARQ and thus achieve ultra-low latency in 5G cellular systems. We formulate the edge caching design as an optimization problem for maximizing caching utility so as to obtain the optimal caching time. Then, for real-time data flows with different latency constraints, we propose a scheduling policy based on network coding group (NCG) to maximize coding opportunities and thus improve the overall latency performance of multicast fronthaul transmission. We evaluate the performance of ENC by conducting simulation experiments based on NS-3. Numerical results show that ENC can efficiently reduce the delivery delay.

  • Representation Learning of Tongue Dynamics for a Silent Speech Interface

    Hongcui WANG  Pierre ROUSSEL  Bruce DENBY  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:12
      Page(s):
    2209-2217

    A Silent Speech Interface (SSI) is a sensor-based, Artificial Intelligence (AI) enabled system in which articulation is performed without the use of the vocal chords, resulting in a voice interface that conserves the ambient audio environment, protects private data, and also functions in noisy environments. Though portable SSIs based on ultrasound imaging of the tongue have obtained Word Error Rates rivaling that of acoustic speech recognition, SSIs remain relegated to the laboratory due to stability issues. Indeed, reliable extraction of acoustic features from ultrasound tongue images in real-life situations has proven elusive. Recently, Representation Learning has shown considerable success in learning underlying structure in noisy, high-dimensional raw data. In its unsupervised form, Representation Learning is able to reveal structure in unlabeled data, thus greatly simplifying the data preparation task. In the present article, a 3D Convolutional Neural Network architecture is applied to unlabeled ultrasound images, and is shown to reliably predict future tongue configurations. By comparing the 3DCNN to a simple previous-frame predictor, it is possible to recognize tongue trajectories comprising transitions between regions of stability that correlate with formant trajectories in a spectrogram of the signal. Prospects for using the underlying structural representation to provide features for subsequent speech processing tasks are presented.

  • Solving 3D Container Loading Problems Using Physics Simulation for Genetic Algorithm Evaluation

    Shuhei NISHIYAMA  Chonho LEE  Tomohiro MASHITA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/06
      Vol:
    E104-D No:11
      Page(s):
    1913-1922

    In this work, an optimization method for the 3D container loading problem with multiple constraints is proposed. The method consists of a genetic algorithm to generate an arrangement of cargo and a fitness evaluation using a physics simulation. The fitness function considers not only the maximization of the container density and fitness value but also several different constraints such as weight, stack-ability, fragility, and orientation of cargo pieces. We employed a container shaking simulation for the fitness evaluation to include constraint effects during loading and transportation. We verified that the proposed method successfully provides the optimal cargo arrangement for small-scale problems with about 10 pieces of cargo.

  • Research on DoS Attacks Intrusion Detection Model Based on Multi-Dimensional Space Feature Vector Expansion K-Means Algorithm

    Lijun GAO  Zhenyi BIAN  Maode MA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/04/22
      Vol:
    E104-B No:11
      Page(s):
    1377-1385

    DoS (Denial of Service) attacks are becoming one of the most serious security threats to global networks. We analyze the existing DoS detection methods and defense mechanisms in depth. In recent years, K-Means and improved variants have been widely examined for security intrusion detection, but the detection accuracy to data is not satisfactory. In this paper we propose a multi-dimensional space feature vector expansion K-Means model to detect threats in the network environment. The model uses a genetic algorithm to optimize the weight of K-Means multi-dimensional space feature vector, which greatly improves the detection rate against 6 typical Dos attacks. Furthermore, in order to verify the correctness of the model, this paper conducts a simulation on the NSL-KDD data set. The results show that the algorithm of multi-dimensional space feature vectors expansion K-Means improves the recognition accuracy to 96.88%. Furthermore, 41 kinds of feature vectors in NSL-KDD are analyzed in detail according to a large number of experimental training. The feature vector of the probability positive return of security attack detection is accurately extracted, and a comparison chart is formed to support subsequent research. A theoretical analysis and experimental results show that the multi-dimensional space feature vector expansion K-Means algorithm has a good application in the detection of DDos attacks.

  • Evaluation Metrics for the Cost of Data Movement in Deep Neural Network Acceleration

    Hongjie XU  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:11
      Page(s):
    1488-1498

    Hardware accelerators are designed to support a specialized processing dataflow for everchanging deep neural networks (DNNs) under various processing environments. This paper introduces two hardware properties to describe the cost of data movement in each memory hierarchy. Based on the hardware properties, this paper proposes a set of evaluation metrics that are able to evaluate the number of memory accesses and the required memory capacity according to the specialized processing dataflow. Proposed metrics are able to analytically predict energy, throughput, and area of a hardware design without detailed implementation. Once a processing dataflow and constraints of hardware resources are determined, the proposed evaluation metrics quickly quantify the expected hardware benefits, thereby reducing design time.

  • The Uncontrolled Web: Measuring Security Governance on the Web

    Yuta TAKATA  Hiroshi KUMAGAI  Masaki KAMIZONO  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1828-1838

    While websites are becoming more and more complex daily, the difficulty of managing them is also increasing. It is important to conduct regular maintenance against these complex websites to strengthen their security and improve their cyber resilience. However, misconfigurations and vulnerabilities are still being discovered on some pages of websites and cyberattacks against them are never-ending. In this paper, we take the novel approach of applying the concept of security governance to websites; and, as part of this, measuring the consistency of software settings and versions used on these websites. More precisely, we analyze multiple web pages with the same domain name and identify differences in the security settings of HTTP headers and versions of software among them. After analyzing over 8,000 websites of popular global organizations, our measurement results show that over half of the tested websites exhibit differences. For example, we found websites running on a web server whose version changes depending on access and using a JavaScript library with different versions across over half of the tested pages. We identify the cause of such governance failures and propose improvement plans.

  • Monocone Antenna with Short Elements on Wideband Choke Structure Using Composite Right/Left-Handed Coaxial Line

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1408-1418

    The composite right/left-handed (CRLH) coaxial line (CL) with wideband electromagnetic band gap (EBG) is applied to the wideband choke structure for a monocone antenna with short elements, and the resulting characteristics are considered. In the proposed antenna, impedance matching and leakage current suppression can be achieved across a wideband off. The lowest frequency (|S11| ≤ -10dB) of the proposed antenna is about the same as that of the monocone antenna on an infinite ground plane. In addition, the radiation patterns of the proposed antenna are close to the figure of eight in wideband. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • Frank-Wolfe Algorithm for Learning SVM-Type Multi-Category Classifiers

    Kenya TAJIMA  Yoshihiro HIROHASHI  Esmeraldo ZARA  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/11
      Vol:
    E104-D No:11
      Page(s):
    1923-1929

    The multi-category support vector machine (MC-SVM) is one of the most popular machine learning algorithms. There are numerous MC-SVM variants, although different optimization algorithms were developed for diverse learning machines. In this study, we developed a new optimization algorithm that can be applied to several MC-SVM variants. The algorithm is based on the Frank-Wolfe framework that requires two subproblems, direction-finding and line search, in each iteration. The contribution of this study is the discovery that both subproblems have a closed form solution if the Frank-Wolfe framework is applied to the dual problem. Additionally, the closed form solutions on both the direction-finding and line search exist even for the Moreau envelopes of the loss functions. We used several large datasets to demonstrate that the proposed optimization algorithm rapidly converges and thereby improves the pattern recognition performance.

  • Analysis against Security Issues of Voice over 5G

    Hyungjin CHO  Seongmin PARK  Youngkwon PARK  Bomin CHOI  Dowon KIM  Kangbin YIM  

     
    PAPER

      Pubricized:
    2021/07/13
      Vol:
    E104-D No:11
      Page(s):
    1850-1856

    In Feb 2021, As the competition for commercialization of 5G mobile communication has been increasing, 5G SA Network and Vo5G are expected to be commercialized soon. 5G mobile communication aims to provide 20 Gbps transmission speed which is 20 times faster than 4G mobile communication, connection of at least 1 million devices per 1 km2, and 1 ms transmission delay which is 10 times shorter than 4G. To meet this, various technological developments were required, and various technologies such as Massive MIMO (Multiple-Input and Multiple-Output), mmWave, and small cell network were developed and applied in the area of 5G access network. However, in the core network area, the components constituting the LTE (Long Term Evolution) core network are utilized as they are in the NSA (Non-Standalone) architecture, and only the changes in the SA (Standalone) architecture have occurred. Also, in the network area for providing the voice service, the IMS (IP Multimedia Subsystem) infrastructure is still used in the SA architecture. Here, the issue is that while 5G mobile communication is evolving openly to provide various services, security elements are vulnerable to various cyber-attacks because they maintain the same form as before. Therefore, in this paper, we will look at what the network standard for 5G voice service provision consists of, and what are the vulnerable problems in terms of security. And We Suggest Possible Attack Scenario using Security Issue, We also want to consider whether these problems can actually occur and what is the countermeasure.

801-820hit(16314hit)