The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

621-640hit(16314hit)

  • Control of Radiation Direction in an Aperture Array Excited by a Waveguide 2-Plane Hybrid Coupler

    Yuki SUNAGUCHI  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    906-912

    This paper details the design of a plate that controls the beam direction in an aperture array excited by a waveguide 2-plane hybrid coupler. The beam direction can be controlled in the range of ±15-32deg. in the quasi H-plane, and ±26-54deg. in the quasi E-plane at the design frequency of 66.425GHz. Inductive irises are introduced into tapered waveguides in the plate and the reflection is suppressed by narrow apertures. A plate that has a larger tilt angle in the quasi E-plane and another plate with conventional rectangular waveguide ports as a reference are fabricated and measured. The measured values agree well with the simulation results.

  • Ambipolar Conduction of λ-DNA Transistor Fabricated on SiO2/Si Structure

    Naoto MATSUO  Kazuki YOSHIDA  Koji SUMITOMO  Kazushige YAMANA  Tetsuo TABEI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/01/26
      Vol:
    E105-C No:8
      Page(s):
    369-374

    This paper reports on the ambipolar conduction for the λ-Deoxyribonucleic Acid (DNA) field effect transistor (FET) with 450, 400 and 250 base pair experimentally and theoretically. It was found that the drain current of the p-type DNA/Si FET increased as the ratio of the guanine-cytosine (GC) pair increased and that of the n-type DNA/Si FET decreased as the ratio of the adenine-thymine (AT) pair decreased, and the ratio of the GC pair and AT pair was controlled by the total number of the base pair. In addition, it was found that the hole conduction mechanism of the 400 bp DNA/Si FET was polaron hopping and its activation energy was 0.13eV. By considering the electron affinity of the adenine, thymine, guanine, and cytosine, the ambipolar characteristics of the DNA/Si FET was understood. The holes are injected to the guanine base for the negative gate voltage, and the electrons are injected to the adenine, thymine, and cytosine for the positive gate voltage.

  • Locally Differentially Private Minimum Finding

    Kazuto FUKUCHI  Chia-Mu YU  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1418-1430

    We investigate a problem of finding the minimum, in which each user has a real value, and we want to estimate the minimum of these values under the local differential privacy constraint. We reveal that this problem is fundamentally difficult, and we cannot construct a consistent mechanism in the worst case. Instead of considering the worst case, we aim to construct a private mechanism whose error rate is adaptive to the easiness of estimation of the minimum. As a measure of easiness, we introduce a parameter α that characterizes the fatness of the minimum-side tail of the user data distribution. As a result, we reveal that the mechanism can achieve O((ln6N/ε2N)1/2α) error without knowledge of α and the error rate is near-optimal in the sense that any mechanism incurs Ω((1/ε2N)1/2α) error. Furthermore, we demonstrate that our mechanism outperforms a naive mechanism by empirical evaluations on synthetic datasets. Also, we conducted experiments on the MovieLens dataset and a purchase history dataset and demonstrate that our algorithm achieves Õ((1/N)1/2α) error adaptively to α.

  • A Low-Cost Training Method of ReRAM Inference Accelerator Chips for Binarized Neural Networks to Recover Accuracy Degradation due to Statistical Variabilities

    Zian CHEN  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2022/01/31
      Vol:
    E105-C No:8
      Page(s):
    375-384

    A new software based in-situ training (SBIST) method to achieve high accuracies is proposed for binarized neural networks inference accelerator chips in which measured offsets in sense amplifiers (activation binarizers) are transformed into biases in the training software. To expedite this individual training, the initial values for the weights are taken from results of a common forming training process which is conducted in advance by using the offset fluctuation distribution averaged over the fabrication line. SPICE simulation inference results for the accelerator predict that the accuracy recovers to higher than 90% even when the amplifier offset is as large as 40mV only after a few epochs of the individual training.

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • Deep Learning Based Low Complexity Symbol Detection and Modulation Classification Detector

    Chongzheng HAO  Xiaoyu DANG  Sai LI  Chenghua WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/24
      Vol:
    E105-B No:8
      Page(s):
    923-930

    This paper presents a deep neural network (DNN) based symbol detection and modulation classification detector (SDMCD) for mixed blind signals detection. Unlike conventional methods that employ symbol detection after modulation classification, the proposed SDMCD can perform symbol recovery and modulation identification simultaneously. A cumulant and moment feature vector is presented in conjunction with a low complexity sparse autoencoder architecture to complete mixed signals detection. Numerical results show that SDMCD scheme has remarkable symbol error rate performance and modulation classification accuracy for various modulation formats in AWGN and Rayleigh fading channels. Furthermore, the proposed detector has robust performance under the impact of frequency and phase offsets.

  • Performance Improvement of Radio-Wave Encrypted MIMO Communications Using Average LLR Clipping Open Access

    Mamoru OKUMURA  Keisuke ASANO  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/15
      Vol:
    E105-B No:8
      Page(s):
    931-943

    In recent years, there has been significant interest in information-theoretic security techniques that encrypt physical layer signals. We have proposed chaos modulation, which has both physical layer security and channel coding gain, as one such technique. In the chaos modulation method, the channel coding gain can be increased using a turbo mechanism that exchanges the log-likelihood ratio (LLR) with an external concatenated code using the max-log approximation. However, chaos modulation, which is a type of Gaussian modulation, does not use fixed mapping, and the distance between signal points is not constant; therefore, the accuracy of the max-log approximated LLR degrades under poor channel conditions. As a result, conventional methods suffer from performance degradation owing to error propagation in turbo decoding. Therefore, in this paper, we propose a new LLR clipping method that can be optimally applied to chaos modulation by limiting the confidence level of LLR and suppressing error propagation. For effective clipping on chaos modulation that does not have fixed mappings, the average confidence value is obtained from the extrinsic LLR calculated from the demodulator and decoder, and clipping is performed based on this value, either in the demodulator or the decoder. Numerical results indicated that the proposed method achieves the same performance as the one using the exact LLR, which requires complicated calculations. Furthermore, the security feature of the proposed system is evaluated, and we observe that sufficient security is provided.

  • LDPC Codes for Communication Systems: Coding Theoretic Perspective Open Access

    Takayuki NOZAKI  Motohiko ISAKA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    894-905

    Low-density parity-check (LDPC) codes are widely used in communication systems for their high error-correcting performance. This survey introduces the elements of LDPC codes: decoding algorithms, code construction, encoding algorithms, and several classes of LDPC codes.

  • Blind Signal Separation for Array Radar Measurement Using Mathematical Model of Pulse Wave Propagation Open Access

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    981-989

    This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.

  • Minimal Paths in a Bicube

    Masaaki OKADA  Keiichi KANEKO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:8
      Page(s):
    1383-1392

    Nowadays, a rapid increase of demand on high-performance computation causes the enthusiastic research activities regarding massively parallel systems. An interconnection network in a massively parallel system interconnects a huge number of processing elements so that they can cooperate to process tasks by communicating among others. By regarding a processing element and a link between a pair of processing elements as a node and an edge, respectively, many problems with respect to communication and/or routing in an interconnection network are reducible to the problems in the graph theory. For interconnection networks of the massively parallel systems, many topologies have been proposed so far. The hypercube is a very popular topology and it has many variants. The bicube is a such topology and it can interconnect the same number of nodes with the same degree as the hypercube while its diameter is almost half of that of the hypercube. In addition, the bicube keeps the node-symmetric property. Hence, we focus on the bicube and propose an algorithm that gives a minimal or shortest path between an arbitrary pair of nodes. We give a proof of correctness of the algorithm and demonstrate its execution.

  • Detection and Tracking Method for Dynamic Barcodes Based on a Siamese Network

    Menglong WU  Cuizhu QIN  Hongxia DONG  Wenkai LIU  Xiaodong NIE  Xichang CAI  Yundong LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    866-875

    In many screen to camera communication (S2C) systems, the barcode preprocessing method is a significant prerequisite because barcodes may be deformed due to various environmental factors. However, previous studies have focused on barcode detection under static conditions; to date, few studies have been carried out on dynamic conditions (for example, the barcode video stream or the transmitter and receiver are moving). Therefore, we present a detection and tracking method for dynamic barcodes based on a Siamese network. The backbone of the CNN in the Siamese network is improved by SE-ResNet. The detection accuracy achieved 89.5%, which stands out from other classical detection networks. The EAO reaches 0.384, which is better than previous tracking methods. It is also superior to other methods in terms of accuracy and robustness. The SE-ResNet in this paper improved the EAO by 1.3% compared with ResNet in SiamMask. Also, our method is not only applicable to static barcodes but also allows real-time tracking and segmentation of barcodes captured in dynamic situations.

  • A Hybrid Bayesian-Convolutional Neural Network for Adversarial Robustness

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/11
      Vol:
    E105-D No:7
      Page(s):
    1308-1319

    We introduce a hybrid Bayesian-convolutional neural network (hyBCNN) for improving the robustness against adversarial attacks and decreasing the computation time in the Bayesian inference phase. Our hyBCNN models are built from a part of BNN and CNN. Based on pre-trained CNNs, we only replace convolutional layers and activation function of the initial stage of CNNs with our Bayesian convolutional (BC) and Bayesian activation (BA) layers as a term of transfer learning. We keep the remainder of CNNs unchanged. We adopt the Bayes without Bayesian Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian inference towards adversarial robustness. Our proposal outperforms adversarial training and robust activation function, which are currently the outstanding defense methods of CNNs in the resistance to adversarial attacks such as PGD and C&W. Moreover, the proposed architecture with BwoBL can easily integrate into any pre-trained CNN, especially in scaling networks, e.g., ResNet and EfficientNet, with better performance on large-scale datasets. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our best hyBCNN EfficientNet reaches 93.92% top-5 accuracy without additional training.

  • PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics

    Kyungmin KIM  Jiung SONG  Jong Wook KWAK  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1330-1334

    We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.

  • Gray Augmentation Exploration with All-Modality Center-Triplet Loss for Visible-Infrared Person Re-Identification

    Xiaozhou CHENG  Rui LI  Yanjing SUN  Yu ZHOU  Kaiwen DONG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/06
      Vol:
    E105-D No:7
      Page(s):
    1356-1360

    Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.

  • A Large-Scale SCMA Codebook Optimization and Codeword Allocation Method

    Shiqing QIAN  Wenping GE  Yongxing ZHANG  Pengju ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    788-796

    Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.

  • A Survey on Explainable Fake News Detection

    Ken MISHIMA  Hayato YAMANA  

     
    SURVEY PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:7
      Page(s):
    1249-1257

    The increasing amount of fake news is a growing problem that will progressively worsen in our interconnected world. Machine learning, particularly deep learning, is being used to detect misinformation; however, the models employed are essentially black boxes, and thus are uninterpretable. This paper presents an overview of explainable fake news detection models. Specifically, we first review the existing models, datasets, evaluation techniques, and visualization processes. Subsequently, possible improvements in this field are identified and discussed.

  • A Satellite Handover Strategy Based on Heuristic Algorithm for LEO Satellite Networks

    Senbai ZHANG  Aijun LIU  Chen HAN  Xiaohu LIANG  Xiang DING  Aihong LU  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    876-884

    Due to the significant difference in speed between the user terminals (UTs) and the low earth orbit (LEO) satellites, it is necessary to solve the frequent handover of UTs at the edge of the moving satellite beams. Besides, as the development of LEO satellite communications, the scale of constellations and the number of UTs undergoing massive increase. Thus, in this paper, a satellite handover strategy is proposed to improve the handover performances of UTs and satellites. We define the utility function of handover jointly by considering the quality of experience of UTs, the throughput of satellites and the load balancing of network. Then, a coding method is proposed to represent the combinations of UTs and satellites. To reduce the calculational cost, an access and handover strategy based on a heuristic algorithm is proposed to search the optimal handover result. Finally, simulations show the effectiveness and superiority of the proposed strategy.

  • A Solar-Cell-Assisted, 99% Biofuel Cell Area Reduced, Biofuel-Cell-Powered Wireless Biosensing System in 65nm CMOS for Continuous Glucose Monitoring Contact Lenses Open Access

    Guowei CHEN  Kiichi NIITSU  

     
    BRIEF PAPER

      Pubricized:
    2022/01/05
      Vol:
    E105-C No:7
      Page(s):
    343-348

    This brief proposes a solar-cell-assisted wireless biosensing system that operates using a biofuel cell (BFC). To facilitate BFC area reduction for the use of this system in area-constrained continuous glucose monitoring contact lenses, an energy harvester combined with an on-chip solar cell is introduced as a dedicated power source for the transmitter. A dual-oscillator-based supply voltage monitor is employed to convert the BFC output into digital codes. From measurements of the test chip fabricated in 65-nm CMOS technology, the proposed system can achieve 99% BFC area reduction.

  • Position Estimation for the Capsule Endoscope Using High-Definition Numerical Human Body Model and Measurement Open Access

    Akihiro YOSHITAKE  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/01/11
      Vol:
    E105-B No:7
      Page(s):
    848-855

    Currently, wireless power transmission technology is being developed for capsule endoscopes. By removing the battery, the capsule endoscope is miniaturized, the number of images that can be taken increases, and the risk of harmful substances leaking from the battery when it is damaged inside the body is avoided. Furthermore, diagnostic accuracy is improved by adjusting the directivity of radio waves according to the position of the capsule endoscope to improve efficiency and adjusting the number of images to be taken according to position by real-time position estimation. In this study, we report the result of position estimation in a high-definition numerical human body model and in an experiment on an electromagnetic phantom.

621-640hit(16314hit)