The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

841-860hit(16314hit)

  • An Effective Feature Extraction Mechanism for Intrusion Detection System

    Cheng-Chung KUO  Ding-Kai TSENG  Chun-Wei TSAI  Chu-Sing YANG  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1814-1827

    The development of an efficient detection mechanism to determine malicious network traffic has been a critical research topic in the field of network security in recent years. This study implemented an intrusion-detection system (IDS) based on a machine learning algorithm to periodically convert and analyze real network traffic in the campus environment in almost real time. The focuses of this study are on determining how to improve the detection rate of an IDS and how to detect more non-well-known port attacks apart from the traditional rule-based system. Four new features are used to increase the discriminant accuracy. In addition, an algorithm for balancing the data set was used to construct the training data set, which can also enable the learning model to more accurately reflect situations in real environment.

  • Specificity Analysis for Nonlinear Distorted Radiation Using 4.65GHz Band Massive Element Active Antenna System for 5G and Influence on Spatial Multiplexing Performance Open Access

    Takuji MOCHIZUKI  

     
    INVITED PAPER

      Pubricized:
    2021/04/08
      Vol:
    E104-C No:10
      Page(s):
    543-551

    This paper reports the evaluation and simulated results of the nonlinear characteristics of the 4.65GHz Active Antenna System (AAS) for 5G mobile communication systems. The antenna element is composed of ±45° dual polarization shared patch antenna, and is equipped with total 64 elements with horizontal 8 × vertical 4 × 2 polarization configuration. A 32-element transceiver circuit was mounted on the back side of the antenna printed circuit board. With the above circuit configuration, a full digital beamforming method has been adopted that can realize high frequency utilization efficiency by using the Sub6GHz-band massive element AAS, and excellent spatial multiplexing performance by Massive MIMO has been pursued. However, it was found that the Downlink (DL) SINR (Signal to Interference and Noise Ratio) to each terminal deteriorated because of the nonlinear distorted radiation as the transmission output power was increased in the maximum rated direction. Therefore, it has been confirmed that the spatial multiplexing performance in the high output power region is significantly improved by installing DPD. In order to clarify the affection of nonlinear distorted radiation on spatial multiplexing performance, the radiation patterns were measured using OFDM signal (subcarrier spacing 60kHz × 1500 subcarriers in 90MHz bandwidth) in an anechoic chamber. And by the simulated analysis for the affection of nonlinear distortion on null characteristic, the accuracy of nulls generated in each user terminal direction does not depend on the degree of nonlinearity, but is affected by the residual amplitude and phase variation among all transmitters and receivers after calibration (CAL). Therefore, it was clarified that the double compensation configuration of DPD and high-precision CAL is effective for achieving excellent Massive MIMO performance. This paper is based on the IEICE Japanese Transactions on Communications (Vol.J102-B, No.11, pp.816-824, Nov. 2019).

  • Siamese Visual Tracking with Dual-Pipeline Correlated Fusion Network

    Ying KANG  Cong LIU  Ning WANG  Dianxi SHI  Ning ZHOU  Mengmeng LI  Yunlong WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1702-1711

    Siamese visual tracking, viewed as a problem of max-similarity matching to the target template, has absorbed increasing attention in computer vision. However, it is a challenge for current Siamese trackers that the demands of balance between accuracy in real-time tracking and robustness in long-time tracking are hard to meet. This work proposes a new Siamese based tracker with a dual-pipeline correlated fusion network (named as ADF-SiamRPN), which consists of one initial template for robust correlation, and the other transient template with the ability of adaptive feature optimal selection for accurate correlation. By the promotion from the learnable correlation-response fusion network afterwards, we are in pursuit of the synthetical improvement of tracking performance. To compare the performance of ADF-SiamRPN with state-of-the-art trackers, we conduct lots of experiments on benchmarks like OTB100, UAV123, VOT2016, VOT2018, GOT-10k, LaSOT and TrackingNet. The experimental results of tracking demonstrate that ADF-SiamRPN outperforms all the compared trackers and achieves the best balance between accuracy and robustness.

  • Overloaded Wireless MIMO Switching for Information Exchanging through Untrusted Relay in Secure Wireless Communication

    Arata TAKAHASHI  Osamu TAKYU  Hiroshi FUJIWARA  Takeo FUJII  Tomoaki OHTSUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1249-1259

    Information exchange through a relay node is attracting attention for applying machine-to-machine communications. If the node demodulates the received signal in relay processing confidentially, the information leakage through the relay station is a problem. In wireless MIMO switching, the frequency spectrum usage efficiency can be improved owing to the completion of information exchange within a short time. This study proposes a novel wireless MIMO switching method for secure information exchange. An overloaded situation, in which the access nodes are one larger than the number of antennas in the relay node, makes the demodulation of the relay node difficult. The access schedule of nodes is required for maintaining the overload situation and the high information exchange efficiency. This study derives the equation model of the access schedule and constructs an access schedule with fewer time periods in the integer programming problem. From the computer simulation, we confirm that the secure capacity of the proposed MIMO switching is larger than that of the original one, and the constructed access schedule is as large as the ideal and minimum time period for information exchange completion.

  • An Optimistic Synchronization Based Optimal Server Selection Scheme for Delay Sensitive Communication Services Open Access

    Akio KAWABATA  Bijoy Chand CHATTERJEE  Eiji OKI  

     
    PAPER-Network System

      Pubricized:
    2021/04/09
      Vol:
    E104-B No:10
      Page(s):
    1277-1287

    In distributed processing for communication services, a proper server selection scheme is required to reduce delay by ensuring the event occurrence order. Although a conservative synchronization algorithm (CSA) has been used to achieve this goal, an optimistic synchronization algorithm (OSA) can be feasible for synchronizing distributed systems. In comparison with CSA, which reproduces events in occurrence order before processing applications, OSA can be feasible to realize low delay communication as the processing events arrive sequentially. This paper proposes an optimal server selection scheme that uses OSA for distributed processing systems to minimize end-to-end delay under the condition that maximum status holding time is limited. In other words, the end-to-end delay is minimized based on the allowed rollback time, which is given according to the application designing aspects and availability of computing resources. Numerical results indicate that the proposed scheme reduces the delay compared to the conventional scheme.

  • Health Indicator Estimation by Video-Based Gait Analysis

    Ruochen LIAO  Kousuke MORIWAKI  Yasushi MAKIHARA  Daigo MURAMATSU  Noriko TAKEMURA  Yasushi YAGI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1678-1690

    In this study, we propose a method to estimate body composition-related health indicators (e.g., ratio of body fat, body water, and muscle, etc.) using video-based gait analysis. This method is more efficient than individual measurement using a conventional body composition meter. Specifically, we designed a deep-learning framework with a convolutional neural network (CNN), where the input is a gait energy image (GEI) and the output consists of the health indicators. Although a vast amount of training data is typically required to train network parameters, it is unfeasible to collect sufficient ground-truth data, i.e., pairs consisting of the gait video and the health indicators measured using a body composition meter for each subject. We therefore use a two-step approach to exploit an auxiliary gait dataset that contains a large number of subjects but lacks the ground-truth health indicators. At the first step, we pre-train a backbone network using the auxiliary dataset to output gait primitives such as arm swing, stride, the degree of stoop, and the body width — considered to be relevant to the health indicators. At the second step, we add some layers to the backbone network and fine-tune the entire network to output the health indicators even with a limited number of ground-truth data points of the health indicators. Experimental results show that the proposed method outperforms the other methods when training from scratch as well as when using an auto-encoder-based pre-training and fine-tuning approach; it achieves relatively high estimation accuracy for the body composition-related health indicators except for body fat-relevant ones.

  • FL-GAN: Feature Learning Generative Adversarial Network for High-Quality Face Sketch Synthesis

    Lin CAO  Kaixuan LI  Kangning DU  Yanan GUO  Peiran SONG  Tao WANG  Chong FU  

     
    PAPER-Image

      Pubricized:
    2021/04/05
      Vol:
    E104-A No:10
      Page(s):
    1389-1402

    Face sketch synthesis refers to transform facial photos into sketches. Recent research on face sketch synthesis has achieved great success due to the development of Generative Adversarial Networks (GAN). However, these generative methods prone to neglect detailed information and thus lose some individual specific features, such as glasses and headdresses. In this paper, we propose a novel method called Feature Learning Generative Adversarial Network (FL-GAN) to synthesize detail-preserving high-quality sketches. Precisely, the proposed FL-GAN consists of one Feature Learning (FL) module and one Adversarial Learning (AL) module. The FL module aims to learn the detailed information of the image in a latent space, and guide the AL module to synthesize detail-preserving sketch. The AL Module aims to learn the structure and texture of sketch and improve the quality of synthetic sketch by adversarial learning strategy. Quantitative and qualitative comparisons with seven state-of-the-art methods such as the LLE, the MRF, the MWF, the RSLCR, the RL, the FCN and the GAN on four facial sketch datasets demonstrate the superiority of this method.

  • A DLL-Based Body Bias Generator with Independent P-Well and N-Well Biasing for Minimum Energy Operation

    Kentaro NAGAI  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/04/20
      Vol:
    E104-C No:10
      Page(s):
    617-624

    This paper proposes an area- and energy-efficient DLL-based body bias generator (BBG) for minimum energy operation that controls p-well and n-well bias independently. The BBG can minimize total energy consumption of target circuits under a skewed process condition between nMOSFETs and pMOSFETs. The proposed BBG is composed of digital cells compatible with cell-based design, which enables energy- and area-efficient implementation without additional supply voltages. A test circuit is implemented in a 65-nm FDSOI process. Measurement results using a 32-bit RISC processor on the same chip show that the proposed BBG can reduce energy consumption close to a minimum within a 3% energy loss. In this condition, energy and area overheads of the BBG are 0.2% and 0.12%, respectively.

  • A Spectrum Regeneration and Demodulation Method for Multiple Direct Undersampled Real Signals Open Access

    Takashi SHIBA  Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1260-1267

    We propose a spectrum regeneration and demodulation method for multiple direct RF undersampled real signals by using a new algorithm. Many methods have been proposed to regenerate the RF spectrum by using undersampling because of its simple circuit architecture. However, it is difficult to regenerate the spectrum from a real signal that has a band wider than a half of the sampling frequency, because it is difficult to include complex conjugate relation of the folded spectrum into the linear algebraic equation in this case. We propose a new spectrum regeneration method from direct undersampled real signals that uses multiple clocks and an extended algorithm considering the complex conjugate relation. Simulations are used to verify the potential of this method. The validity of the proposed method is verified by using the simulation data and the measured data. We also apply this algorithm to the demodulation system.

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • Discovering Multiple Clusters of Sightseeing Spots to Improve Tourist Satisfaction Using Network Motifs

    Tengfei SHAO  Yuya IEIRI  Reiko HISHIYAMA  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1640-1650

    Tourist satisfaction plays a very important role in the development of local community tourism. For the development of tourist destinations in local communities, it is important to measure, maintain, and improve tourist destination royalties over the medium to long term. It has been proven that improving tourist satisfaction is a major factor in improving tourist destination royalties. Therefore, to improve tourist satisfaction in local communities, we identified multiple clusters of sightseeing spots and determined that the satisfaction of tourists can be increased based on these clusters of sightseeing spots. Our discovery flow can be summarized as follows. First, we extracted tourism keywords from guidebooks on sightseeing spots. We then constructed a complex network of tourists and sightseeing spots based on the data collected from experiments conducted in Kyoto. Next, we added the corresponding tourism keywords to each sightseeing spot. Finally, by analyzing network motifs, we successfully discovered multiple clusters of sightseeing spots that could be used to improve tourist satisfaction.

  • Research on a Prediction Method for Carbon Dioxide Concentration Based on an Optimized LSTM Network of Spatio-Temporal Data Fusion

    Jun MENG  Gangyi DING  Laiyang LIU  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1753-1757

    In view of the different spatial and temporal resolutions of observed multi-source heterogeneous carbon dioxide data and the uncertain quality of observations, a data fusion prediction model for observed multi-scale carbon dioxide concentration data is studied. First, a wireless carbon sensor network is created, the gross error data in the original dataset are eliminated, and remaining valid data are combined with kriging method to generate a series of continuous surfaces for expressing specific features and providing unified spatio-temporally normalized data for subsequent prediction models. Then, the long short-term memory network is used to process these continuous time- and space-normalized data to obtain the carbon dioxide concentration prediction model at any scales. Finally, the experimental results illustrate that the proposed method with spatio-temporal features is more accurate than the single sensor monitoring method without spatio-temporal features.

  • Quantum-Noise-Limited BPSK Transmission Using Gain-Saturated Phase-Sensitive Amplifiers

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/04/14
      Vol:
    E104-B No:10
      Page(s):
    1268-1276

    Quantum noise ultimately restricts the transmission distance in fiber communication systems using optical amplifiers. This paper investigates the quantum-noise-limited performance of optical binary phase-shift keying transmission using gain-saturated phase-sensitive amplifiers (PSAs) as optical repeaters. It is shown that coherent state transmission, where ultimately clean light in the classical sense is transmitted, and endless transmission, where the transmission distance is not restricted, are theoretically achievable under certain system conditions owing to the noise suppression effects of the gain-saturated PSA.

  • Power-Based Criteria for Signal Reconstruction Using 1-bit Resolution DACs in Massive MU-MIMO OFDM Downlink

    Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/02
      Vol:
    E104-B No:10
      Page(s):
    1299-1306

    The sum rate performance of nonlinier quantized precoding using Gibbs sampling are evaluated in a massive multiuser multiple-input multiple-output (MU-MIMO) system in this paper. Massive MU-MIMO is a key technology to handle the growth of data traffic. In a full digital massive MU-MIMO system, however, the resolution of digital-to-analogue converters (DACs) in transmit antenna branches have to be low to yield acceptable power consumption. Thus, a combinational optimization problem is solved for the nonlinier quantized precoding to determine transmit signals from finite alphabets output from low resolution DACs. A conventional optimization criterion minimizes errors between desired signals and received signals at user equipments (UEs). However, the system sum rate may decrease as it increases the transmit power. This paper proposes two optimization criteria that take the transmit power into account in order to maximize the sum rate. Mixed Gibbs sampling is applied to obtain the suboptimal solution of the nonlinear optimization problem. Numerical results obtained through computer simulations show that the two proposed criteria achieve higher sum rates than the conventional criterion. On the other hand, the sum rate criterion achieves the largest sum rate while it leads to less throughputs than the MMSE criterion on approximately 60% of subcarriers.

  • A Survey on Spectrum Sensing and Learning Technologies for 6G Open Access

    Zihang SONG  Yue GAO  Rahim TAFAZOLLI  

     
    INVITED PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-B No:10
      Page(s):
    1207-1216

    Cognitive radio provides a feasible solution for alleviating the lack of spectrum resources by enabling secondary users to access the unused spectrum dynamically. Spectrum sensing and learning, as the fundamental function for dynamic spectrum sharing in 5G evolution and 6G wireless systems, have been research hotspots worldwide. This paper reviews classic narrowband and wideband spectrum sensing and learning algorithms. The sub-sampling framework and recovery algorithms based on compressed sensing theory and their hardware implementation are discussed under the trend of high channel bandwidth and large capacity to be deployed in 5G evolution and 6G communication systems. This paper also investigates and summarizes the recent progress in machine learning for spectrum sensing technology.

  • Semi-Structured BitTorrent Protocol with Application to Efficient P2P Video Streaming

    Satoshi FUJITA  

     
    PAPER-Information Network

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1624-1631

    In this paper, we propose a method to enhance the download efficiency of BitTorrent protocol with the notion of structures in the set of pieces generated from a shared file and the swarm of peers downloading the same shared file. More specifically, as for the set of pieces, we introduce the notion of super-pieces called clusters, which is aimed to enlarge the granularity of the management of request-and-reply of pieces, and as for the swarm of peers, we organize a clique consisting of several peers with similar upload capacity, to improve the smoothness of the flow of pieces associated with a cluster. As is shown in the simulation results, the proposed extensions significantly reduce the download time of the first 75% of the downloaders, and thereby improve the performance of P2P-assisted video streaming such as Akamai NetSession and BitTorrent DNA.

  • Spatial Compression of Sensing Information for Exploiting the Vacant Frequency Resource Using Radio Sensors

    Kenichiro YAMAMOTO  Osamu TAKYU  Keiichiro SHIRAI  Yasushi FUWA  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1217-1226

    Recently, broadband wireless communication has been significantly enhanced; thus, frequency spectrum scarcity has become an extremely serious problem. Spatial frequency reuse based on spectrum databases has attracted significant attention. The spectrum database collects wireless environment information, such as the radio signal strength indicator (RSSI), estimates the propagation coefficient for the propagation loss and shadow effect, and finds a vacant area where the secondary system uses the frequency spectrum without harmful interference to the primary system. Wireless sensor networks are required to collect the RSSI from a radio environmental monitor. However, a large number of RSSI values should be gathered because numerous sensors are spread over the wireless environment. In this study, a data compression technique based on spatial features, such as buildings and houses, is proposed. Using computer simulation and experimental evaluation, we confirm that the proposed compression method successfully reduces the size of the RSSI and restores the original RSSI in the recovery process.

  • Highly Efficient Sensing Methods of Primary Radio Transmission Systems toward Dynamic Spectrum Sharing-Based 5G Systems Open Access

    Atomu SAKAI  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1227-1236

    The Dynamic Spectrum Sharing (DSS) system, which uses the frequency band allocated to incumbent systems (i.e., primary users) has attracted attention to expand the available bandwidth of the fifth-generation mobile communication (5G) systems in the sub-6GHz band. In Japan, a DSS system in the 2.3GHz band, in which the ARIB STD-B57-based Field Pickup Unit (FPU) is assigned as an incumbent system, has been studied for the secondary use of 5G systems. In this case, the incumbent FPU is a mobile system, and thus, the DSS system needs to use not only a spectrum sharing database but also radio sensors to detect primary signals with high accuracy, protect the primary system from interference, and achieve more secure spectrum sharing. This paper proposes highly efficient sensing methods for detecting the ARIB STD-B57-based FPU signals in the 2.3GHz band. The proposed methods can be applied to two types of the FPU signal; those that apply the Continuous Pilot (CP) mode pilot and the Scattered Pilot (SP) mode pilot. Moreover, we apply a sample addition method and a symbol addition method for improving the detection performance. Even in the 3GPP EVA channel environment, the proposed method can, with a probability of more than 99%, detect the FPU signal with an SNR of -10dB. In addition, we propose a quantized reference signal for reducing the implementation complexity of the complex cross-correlation circuit. The proposed reference signal can reduce the number of quantization bits of the reference signal to 2 bits for in-phase and 3 bits for orthogonal components.

  • Time of Arrival Ranging and Localization Algorithm in Multi-Path and Non-Line-of-Sight Environments in OFDM System

    Zhenyu ZHANG  Shaoli KANG  Bin REN  Xiang ZHANG  

     
    PAPER-Sensing

      Pubricized:
    2021/04/12
      Vol:
    E104-B No:10
      Page(s):
    1366-1376

    Time of arrival (TOA) is a widely used wireless cellular network ranging technology. How to perform accurate TOA estimation in multi-path and non-line-of-sight (NLOS) environments and then accurately calculating mobile terminal locations are two critical issues in positioning research. NLOS identification can be performed in the TOA measurement part and the position calculation part. In this paper, for the above two steps, two schemes for mitigating NLOS errors are proposed. First, a TOA ranging method based on clustering theory is proposed to solve the problem of line-of-sight (LOS) path estimation in multi-path channels. We model the TOA range as a Gaussian mixture model and illustrate how LOS and NLOS can be measured and identified based on non-parametric Bayesian methods when the wireless transmission environment is unknown. Moreover, for NLOS propagation channels, this paper proposes a user location estimator based on the maximum a posteriori criterion. Combined with the TOA estimation and user location computation scheme proposed in this paper, the terminal's positioning accuracy is improved. Experiments showed that the TOA measurement and localization algorithms presented in this paper have good robustness in complex wireless environments.

  • Diversity-Robust Acoustic Feature Signatures Based on Multiscale Fractal Dimension for Similarity Search of Environmental Sounds

    Motohiro SUNOUCHI  Masaharu YOSHIOKA  

     
    PAPER-Music Information Processing

      Pubricized:
    2021/07/02
      Vol:
    E104-D No:10
      Page(s):
    1734-1748

    This paper proposes new acoustic feature signatures based on the multiscale fractal dimension (MFD), which are robust against the diversity of environmental sounds, for the content-based similarity search. The diversity of sound sources and acoustic compositions is a typical feature of environmental sounds. Several acoustic features have been proposed for environmental sounds. Among them is the widely-used Mel-Frequency Cepstral Coefficients (MFCCs), which describes frequency-domain features. However, in addition to these features in the frequency domain, environmental sounds have other important features in the time domain with various time scales. In our previous paper, we proposed enhanced multiscale fractal dimension signature (EMFD) for environmental sounds. This paper extends EMFD by using the kernel density estimation method, which results in better performance of the similarity search tasks. Furthermore, it newly proposes another acoustic feature signature based on MFD, namely very-long-range multiscale fractal dimension signature (MFD-VL). The MFD-VL signature describes several features of the time-varying envelope for long periods of time. The MFD-VL signature has stability and robustness against background noise and small fluctuations in the parameters of sound sources, which are produced in field recordings. We discuss the effectiveness of these signatures in the similarity sound search by comparing with acoustic features proposed in the DCASE 2018 challenges. Due to the unique descriptiveness of our proposed signatures, we confirmed the signatures are effective when they are used with other acoustic features.

841-860hit(16314hit)