The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

861-880hit(16314hit)

  • Uplink Performance Analysis of MU-MIMO ZF Receiver Over Correlated Rayleigh Fading Channel with Imperfect CSI

    Supraja EDURU  Nakkeeran RANGASWAMY  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/04/21
      Vol:
    E104-B No:10
      Page(s):
    1328-1335

    In this paper, the uplink performance of Multi-User Multiple Input Multiple Output (MU-MIMO) Zero Forcing (ZF) receiver is investigated over correlated Rayleigh fading channels with channel estimation error. A mathematical expression for the sub-streams' output Signal to Noise Ratio (SNR) with transmit and receive-correlation is derived in the presence of erroneous channel estimates. Besides, an approximate and accurate expression for the Bit Error Rate (BER) of ZF receiver for 16-Quadrature Amplitude Modulation (QAM) with transmit-correlation is deduced in terms of the hypergeometric function. Subsequently, the developed analytical BER is verified by Monte-Carlo trails accounting various system parameters. The simulation results indicate that ZF receiver's BER relies solely on the transmit-correlation for the same number of transmit and receive-antennas at higher average SNR values per transmitted symbol (Es/N0). Also, a logarithmic and exponential growth in the BER is observed with an increase in the Mean Square estimation Error (MSE) and correlation coefficient, respectively.

  • An Enhanced HDPC-EVA Decoder Based on ADMM

    Yujin ZHENG  Yan LIN  Zhuo ZHANG  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/02
      Vol:
    E104-A No:10
      Page(s):
    1425-1429

    Linear programming (LP) decoding based on the alternating direction method of multipliers (ADMM) has proved to be effective for low-density parity-check (LDPC) codes. However, for high-density parity-check (HDPC) codes, the ADMM-LP decoder encounters two problems, namely a high-density check matrix in HDPC codes and a great number of pseudocodewords in HDPC codes' fundamental polytope. The former problem makes the check polytope projection extremely complex, and the latter one leads to poor frame error rates (FER) performance. To address these issues, we introduce the even vertex algorithm (EVA) into the ADMM-LP decoding algorithm for HDPC codes, named as HDPC-EVA. HDPC-EVA can reduce the complexity of the projection process and improve the FER performance. We further enhance the proposed decoder by the automorphism groups of codes, creating diversity in the parity-check matrix. The simulation results show that the proposed decoder is capable of cutting down the average decoding time for each iteration by 30%-60%, as well as achieving near maximum likelihood (ML) performance on some BCH codes.

  • Global Optimization Algorithm for Cloud Service Composition

    Hongwei YANG  Fucheng XUE  Dan LIU  Li LI  Jiahui FENG  

     
    PAPER-Computer System

      Pubricized:
    2021/06/30
      Vol:
    E104-D No:10
      Page(s):
    1580-1591

    Service composition optimization is a classic NP-hard problem. How to quickly select high-quality services that meet user needs from a large number of candidate services is a hot topic in cloud service composition research. An efficient second-order beetle swarm optimization is proposed with a global search ability to solve the problem of cloud service composition optimization in this study. First, the beetle antennae search algorithm is introduced into the modified particle swarm optimization algorithm, initialize the population bying using a chaotic sequence, and the modified nonlinear dynamic trigonometric learning factors are adopted to control the expanding capacity of particles and global convergence capability. Second, modified secondary oscillation factors are incorporated, increasing the search precision of the algorithm and global searching ability. An adaptive step adjustment is utilized to improve the stability of the algorithm. Experimental results founded on a real data set indicated that the proposed global optimization algorithm can solve web service composition optimization problems in a cloud environment. It exhibits excellent global searching ability, has comparatively fast convergence speed, favorable stability, and requires less time cost.

  • Similarity Search in InterPlanetary File System with the Aid of Locality Sensitive Hash

    Satoshi FUJITA  

     
    PAPER-Information Network

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1616-1623

    To realize an information-centric networking, IPFS (InterPlanetary File System) generates a unique ContentID for each content by applying a cryptographic hash to the content itself. Although it could improve the security against attacks such as falsification, it makes difficult to realize a similarity search in the framework of IPFS, since the similarity of contents is not reflected in the proximity of ContentIDs. To overcome this issue, we propose a method to apply a locality sensitive hash (LSH) to feature vectors extracted from contents as the key of indexes stored in IPFS. By conducting experiments with 10,000 random points corresponding to stored contents, we found that more than half of randomly given queries return a non-empty result for the similarity search, and yield an accurate result which is outside the σ confidence interval of an ordinary flooding-based method. Note that such a collection of random points corresponds to the worst case scenario for the proposed scheme since the performance of similarity search could improve when points and queries follow an uneven distribution.

  • Eigenvalue Based Relay Selection for XOR-Physical Layer Network Coding in Bi-Directional Wireless Relaying Networks

    Satoshi DENNO  Kazuma YAMAMOTO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/25
      Vol:
    E104-B No:10
      Page(s):
    1336-1344

    This paper proposes relay selection techniques for XOR physical layer network coding with MMSE based non-linear precoding in MIMO bi-directional wireless relaying networks. The proposed selection techniques are derived on the different assumption about characteristics of the MMSE based non-linear precoding in the wireless network. We show that the signal to noise power ratio (SNR) is dependent on the product of all the eigenvalues in the channels from the terminals to relays. This paper shows that the best selection techniques in all the proposed techniques is to select a group of the relays that maximizes the product. Therefore, the selection technique is called “product of all eigenvalues (PAE)” in this paper. The performance of the proposed relay selection techniques is evaluated in a MIMO bi-directional wireless relaying network where two terminals with 2 antennas exchange their information via relays. When the PAE is applied to select a group of the 2 relays out of the 10 relays where an antenna is placed, the PAE attains a gain of more than 13dB at the BER of 10-3.

  • How to Design an Outphasing Power Amplifier with Digital Predistortion Open Access

    Shigekazu KIMURA  Toshio KAWASAKI  

     
    INVITED PAPER

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:10
      Page(s):
    472-479

    For improving the fifth-generation mobile communication system, a highly efficient power amplifier must be designed for the base station. An outphasing amplifier is expected to be a solution for achieving high efficiency. We designed a combiner, one of the key components of the outphasing amplifier, using a serial Chireix combiner and fabricated an amplifier with a GaN HEMT, achieving 70% or more high efficiency up to 9 dB back-off power in an 800 MHz band. We also fabricated a 2 GHz-band outphasing amplifier with the same design. We applied digital predistortion (DPD) to control the balance of amplifying units in this amplifier and achieved an average efficiency of 65% under a 20 MHz modulation bandwidth.

  • Recent Progress on High Output Power, High Frequency and Wide Bandwidth GaN Power Amplifiers Open Access

    Masaru SATO  Yoshitaka NIIDA  Atsushi YAMADA  Junji KOTANI  Shiro OZAKI  Toshihiro OHKI  Naoya OKAMOTO  Norikazu NAKAMURA  

     
    INVITED PAPER

      Pubricized:
    2021/03/12
      Vol:
    E104-C No:10
      Page(s):
    480-487

    This paper presents recent progress on high frequency and wide bandwidth GaN high power amplifiers (PAs) that are usable for high-data-rate wireless communications and modern radar systems. The key devices and design techniques for PA are described in this paper. The results of the state-of-the art GaN PAs for microwave to millimeter-wave applications and design methodology for ultra-wideband GaN PAs are shown. In order to realize high output power density, InAlGaN/GaN HEMTs were employed. An output power density of 14.8 W/mm in S-band was achieved which is 1.5 times higher than that of the conventional AlGaN/GaN HEMTs. This technique was applied to the millimeter-wave GaN PAs, and a measured power density at 96 GHz was 3 W/mm. The modified Angelov model was employed for a millimeter-wave design. W-band GaN MMIC achieved the maximum Pout of 1.15 W under CW operation. The PA with Lange coupler achieved 2.6 W at 94 GHz. The authors also developed a wideband PA. A power combiner with an impedance transformation function based on the transmission line transformer (TLT) technique was adopted for the wideband PA design. The fabricated PA exhibited an average Pout of 233 W, an average PAE of 42 %, in the frequency range of 0.5 GHz to 2.1 GHz.

  • A Study on Highly Efficient Dual-Input Power Amplifiers for Large PAPR Signals Open Access

    Atsushi YAMAOKA  Thomas M. HONE  Yoshimasa EGASHIRA  Keiichi YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-C No:10
      Page(s):
    506-515

    With the advent of 5G and external pressure to reduce greenhouse gas emissions, wireless transceivers with low power consumption are strongly desired for future cellular systems. At the same time, increased modulation order due to the evolution of cellular systems will force power amplifiers to operate at much larger output power back-off to prevent EVM degradation. This paper begins with an analysis of load modulation and asymmetrical Doherty amplifiers. Measurement results will show an apparent 60% efficiency plateau for modulated signals with a large peak-to-average power ratio (PAPR). To exceed this efficiency limitation, the second part of this paper focuses on a new amplification topology based on the amalgamation between Doherty and outphasing. Measurement results of the proposed Doherty-outphasing power amplifier (DOPA) will confirm the feasibility of the approach with a modulated efficiency greater than 70% measured at 10 dB output power back-off.

  • Rectifier Circuit using High-Impedance Feedback Line for Microwave Wireless Power Transfer Systems Open Access

    Seiya MIZUNO  Ryosuke KASHIMURA  Tomohiro SEKI  Maki ARAI  Hiroshi OKAZAKI  Yasunori SUZUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-C No:10
      Page(s):
    552-558

    Research on wireless power transmission technology is being actively conducted, and studies on spatial transmission methods such as SSPS are currently underway for applications such as power transfer to the upper part of steel towers and power transfer to flying objects such as drones. To enable such applications, it is necessary to examine the configuration of the power-transfer and power-receiving antennas and to improve the RF-DC conversion efficiency (hereinafter referred to as conversion efficiency) of the rectifier circuit on the power-receiving antenna. To improve the conversion efficiency, various methods that utilize full-wave rectification rather than half-wave rectification have been proposed. However, these come with problems such as a complicated circuit structure, the need for additional capacitors, the selection of components at high frequencies, and a reduction in mounting yield. In this paper, we propose a method to improve the conversion efficiency by loading a high-impedance microstrip line as a feedback line in part of the rectifier circuit. We analyzed a class-F rectifier circuit using circuit analysis software and found that the conversion efficiency of the conventional configuration was 54.2%, but the proposed configuration was 69.3%. We also analyzed a measuring circuit made with a discrete configuration in the 5.8-GHz band and found that the conversion efficiency was 74.7% at 24dBm input.

  • An Ising Machine-Based Solver for Visiting-Route Recommendation Problems in Amusement Parks

    Yosuke MUKASA  Tomoya WAKAIZUMI  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Computer System

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1592-1600

    In an amusement park, an attraction-visiting route considering the waiting time and traveling time improves visitors' satisfaction and experience. We focus on Ising machines to solve the problem, which are recently expected to solve combinatorial optimization problems at high speed by mapping the problems to Ising models or quadratic unconstrained binary optimization (QUBO) models. We propose a mapping of the visiting-route recommendation problem in amusement parks to a QUBO model for solving it using Ising machines. By using an actual Ising machine, we could obtain feasible solutions one order of magnitude faster with almost the same accuracy as the simulated annealing method for the visiting-route recommendation problem.

  • Asymmetric Tobit Analysis for Correlation Estimation from Censored Data

    HongYuan CAO  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/19
      Vol:
    E104-D No:10
      Page(s):
    1632-1639

    Contamination of water resources with pathogenic microorganisms excreted in human feces is a worldwide public health concern. Surveillance of fecal contamination is commonly performed by routine monitoring for a single type or a few types of microorganism(s). To design a feasible routine for periodic monitoring and to control risks of exposure to pathogens, reliable statistical algorithms for inferring correlations between concentrations of microorganisms in water need to be established. Moreover, because pathogens are often present in low concentrations, some contaminations are likely to be under a detection limit. This yields a pairwise left-censored dataset and complicates computation of correlation coefficients. Errors of correlation estimation can be smaller if undetected values are imputed better. To obtain better imputations, we utilize side information and develop a new technique, the asymmetric Tobit model which is an extension of the Tobit model so that domain knowledge can be exploited effectively when fitting the model to a censored dataset. The empirical results demonstrate that imputation with domain knowledge is effective for this task.

  • A Noise-Canceling Charge Pump for Area Efficient PLL Design Open Access

    Go URAKAWA  Hiroyuki KOBAYASHI  Jun DEGUCHI  Ryuichi FUJIMOTO  

     
    PAPER

      Pubricized:
    2021/04/20
      Vol:
    E104-C No:10
      Page(s):
    625-634

    In general, since the in-band noise of phase-locked loops (PLLs) is mainly caused by charge pumps (CPs), large-size transistors that occupy a large area are used to improve in-band noise of CPs. With the high demand for low phase noise in recent high-performance communication systems, the issue of the trade-off between occupied area and noise in conventional CPs has become significant. A noise-canceling CP circuit is presented in this paper to mitigate the trade-off between occupied area and noise. The proposed CP can achieve lower noise performance than conventional CPs by performing additional noise cancelation. According to the simulation results, the proposed CP can reduce the current noise to 57% with the same occupied area, or can reduce the occupied area to 22% compared with that of the conventional CPs at the same noise performance. We fabricated a prototype of the proposed CP embedded in a 28-GHz LC-PLL using a 16-nm FinFET process, and 1.2-dB improvement in single sideband integrated phase noise is achieved.

  • Multi-Task Learning for Improved Recognition of Multiple Types of Acoustic Information

    Jae-Won KIM  Hochong PARK  

     
    LETTER-Speech and Hearing

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:10
      Page(s):
    1762-1765

    We propose a new method for improving the recognition performance of phonemes, speech emotions, and music genres using multi-task learning. When tasks are closely related, multi-task learning can improve the performance of each task by learning common feature representation for all the tasks. However, the recognition tasks considered in this study demand different input signals of speech and music at different time scales, resulting in input features with different characteristics. In addition, a training dataset with multiple labels for all information sources is not available. Considering these issues, we conduct multi-task learning in a sequential training process using input features with a single label for one information source. A comparative evaluation confirms that the proposed method for multi-task learning provides higher performance for all recognition tasks than individual learning for each task as in conventional methods.

  • Analysis and Design of Continuous-Time Comparator Open Access

    Takahiro MIKI  

     
    INVITED PAPER

      Pubricized:
    2021/10/02
      Vol:
    E104-C No:10
      Page(s):
    635-642

    Applications of continuous-time (CT) comparator include relaxation oscillators, pulse width modulators, and so on. CT comparator receives a differential input and outputs a strobe ideally when the differential input crosses zero. Unlike the DT comparators with positive feedback circuit, amplifiers consuming static power must be employed in CT comparators to amplify the input signal. Therefore, minimization of comparator delay under the constraint of power consumption often becomes an issue. This paper analyzes transient behavior of a CT comparator. Using “constant delay approximation”, the comparator delay is derived as a function of input slew rate, number of stages of the preamplifier, and device parameters in each block. This paper also discusses optimum design of the CT comparator. The condition for minimum comparator delay is derived with keeping power consumption constant. The results include that the optimum DC gain of the preamplifier is e∼e3 per stage depending on the element which dominates load capacitance of the preamplifier.

  • Single Image Dehazing Algorithm Based on Modified Dark Channel Prior

    Hao ZHOU  Zhuangzhuang ZHANG  Yun LIU  Meiyan XUAN  Weiwei JIANG  Hailing XIONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:10
      Page(s):
    1758-1761

    Single image dehazing algorithm based on Dark Channel Prior (DCP) is widely known. More and more image dehazing algorithms based on DCP have been proposed. However, we found that it is more effective to use DCP in the RAW images before the ISP pipeline. In addition, for the problem of DCP failure in the sky area, we propose an algorithm to segment the sky region and compensate the transmission. Extensive experimental results on both subjective and objective evaluation demonstrate that the performance of the modified DCP (MDCP) has been greatly improved, and it is competitive with the state-of-the-art methods.

  • Desirable ITS Communication for Safety: Evaluation by the TsRm Evaluation Method for Overengineering Prevention, and Discussion About Sensor and Communication Fusion

    Ikkei HASEBE  Takaaki HASEGAWA  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2021/04/01
      Vol:
    E104-A No:10
      Page(s):
    1379-1388

    In this paper, for the purpose of clarifying the desired ITS information and communication systems considering both safety and social feasibility to prevention overengineering, using a microscopic traffic flow simulator, we discuss the required information acquisition rate of three types of safety driving support systems, that is, the sensor type and the communication type, the sensor and communication fusion type. Performances are evaluated from the viewpoint of preventing overengineering performance using the “TsRm evaluation method” that considers a vehicle approaching within the range of R meters within T seconds as the vehicle with a high possibility of collision, and that evaluates only those vehicles. The results show that regarding the communication radius and the sensing range, overengineering performance may be estimated when all vehicles in the evaluation area are used for evaluations without considering each vehicle's location, velocity and acceleration as in conventional evaluations. In addition, it is clarified that the sensor and communication fusion type system is advantageous by effectively complementing the defects of the sensor type systems and the communication type systems.

  • On the List Decodability of Matrix Codes with Different Metrics

    Yang DING  Yuting QIU  Hongxi TONG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/03/29
      Vol:
    E104-A No:10
      Page(s):
    1430-1434

    One of the main problems in list decoding is to determine the tradeoff between the list decoding radius and the rate of the codes w.r.t. a given metric. In this paper, we first describe a “stronger-weaker” relationship between two distinct metrics of the same code, then we show that the list decodability of the stronger metric can be deduced from the weaker metric directly. In particular, when we focus on matrix codes, we can obtain list decodability of matrix code w.r.t. the cover metric from the Hamming metric and the rank metric. Moreover, we deduce a Johnson-like bound of the list decoding radius for cover metric codes, which improved the result of [20]. In addition, the condition for a metric that whether the list decoding radius w.r.t. this metric and the rate are bounded by the Singleton bound is presented.

  • Analytical Model of Middlebox Unavailability under Shared Protection Allowing Multiple Backups

    Risa FUJITA  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1147-1158

    This paper presents an analytical model that yields the unavailability of a network function when each backup server can protect two functions and can recover one of them. Previous work describes a model to deal with the case that each function can be protected only by one server. In our model, we allow each function to be protected by multiple servers to ensure function availability. This requires us to know the feasible states of a connected component and its state transitions. By adopting the divide-and-conquer method, we enumerate the feasible states of a connected component. We then classify its state transitions. Based on the obtained feasible states and the classification of the state transitions, we enumerate the feasible states incoming to and outgoing from a general state, the transfer rates, and the conditions. With those informations, we generate multiple equations about the state transitions. Finally, by solving them, we obtain the probabilities that a connected component is in each state and calculate the unavailability of a function. Numerical results show that the average unavailability of a function is reduced by 18% and 5.7% in our two examined cases by allowing each function to be protected by multiple servers.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

861-880hit(16314hit)