The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1141-1160hit(16314hit)

  • Revisiting a Nearest Neighbor Method for Shape Classification

    Kazunori IWATA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/09/23
      Vol:
    E103-D No:12
      Page(s):
    2649-2658

    The nearest neighbor method is a simple and flexible scheme for the classification of data points in a vector space. It predicts a class label of an unseen data point using a majority rule for the labels of known data points inside a neighborhood of the unseen data point. Because it sometimes achieves good performance even for complicated problems, several derivatives of it have been studied. Among them, the discriminant adaptive nearest neighbor method is particularly worth revisiting to demonstrate its application. The main idea of this method is to adjust the neighbor metric of an unseen data point to the set of known data points before label prediction. It often improves the prediction, provided the neighbor metric is adjusted well. For statistical shape analysis, shape classification attracts attention because it is a vital topic in shape analysis. However, because a shape is generally expressed as a matrix, it is non-trivial to apply the discriminant adaptive nearest neighbor method to shape classification. Thus, in this study, we develop the discriminant adaptive nearest neighbor method to make it slightly more useful in shape classification. To achieve this development, a mixture model and optimization algorithm for shape clustering are incorporated into the method. Furthermore, we describe several helpful techniques for the initial guess of the model parameters in the optimization algorithm. Using several shape datasets, we demonstrated that our method is successful for shape classification.

  • Theoretical Analyses of Maximum Cyclic Autocorrelation Selection Based Spectrum Sensing

    Shusuke NARIEDA  Daiki CHO  Hiromichi OGASAWARA  Kenta UMEBAYASHI  Takeo FUJII  Hiroshi NARUSE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/06/22
      Vol:
    E103-B No:12
      Page(s):
    1462-1469

    This paper provides theoretical analyses for maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing techniques in cognitive radio networks. The MCAS-based spectrum sensing techniques are low computational complexity spectrum sensing in comparison with some cyclostationary detection. However, MCAS-based spectrum sensing characteristics have never been theoretically derived. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the values match well with each other.

  • Performance Analysis of the Interval Algorithm for Random Number Generation in the Case of Markov Coin Tossing Open Access

    Yasutada OOHAMA  

     
    PAPER-Shannon Theory

      Vol:
    E103-A No:12
      Page(s):
    1325-1336

    In this paper we analyze the interval algorithm for random number generation proposed by Han and Hoshi in the case of Markov coin tossing. Using the expression of real numbers on the interval [0,1), we first establish an explicit representation of the interval algorithm with the representation of real numbers on the interval [0,1) based one number systems. Next, using the expression of the interval algorithm, we give a rigorous analysis of the interval algorithm. We discuss the difference between the expected number of the coin tosses in the interval algorithm and their upper bound derived by Han and Hoshi and show that it can be characterized explicitly with the established expression of the interval algorithm.

  • A Construction Method of an Isomorphic Map between Quadratic Extension Fields Applicable for SIDH Open Access

    Yuki NANJO  Masaaki SHIRASE  Takuya KUSAKA  Yasuyuki NOGAMI  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/07/06
      Vol:
    E103-A No:12
      Page(s):
    1403-1406

    A quadratic extension field (QEF) defined by F1 = Fp[α]/(α2+1) is typically used for a supersingular isogeny Diffie-Hellman (SIDH). However, there exist other attractive QEFs Fi that result in a competitive or rather efficient performing the SIDH comparing with that of F1. To exploit these QEFs without a time-consuming computation of the initial setting, the authors propose to convert existing parameter sets defined over F1 to Fi by using an isomorphic map F1 → Fi.

  • A Fault Detection and Diagnosis Method for Via-Switch Crossbar in Non-Volatile FPGA

    Ryutaro DOI  Xu BAI  Toshitsugu SAKAMOTO  Masanori HASHIMOTO  

     
    PAPER

      Vol:
    E103-A No:12
      Page(s):
    1447-1455

    FPGA that exploits via-switches, which are a kind of non-volatile resistive RAMs, for crossbar implementation is attracting attention due to its high integration density and energy efficiency. Via-switch crossbar is responsible for the signal routing in the interconnections by changing on/off-states of via-switches. To verify the via-switch crossbar functionality after manufacturing, fault testing that checks whether we can turn on/off via-switches normally is essential. This paper confirms that a general differential pair comparator successfully discriminates on/off-states of via-switches, and clarifies fault modes of a via-switch by transistor-level SPICE simulation that injects stuck-on/off faults to atom switch and varistor, where a via-switch consists of two atom switches and two varistors. We then propose a fault diagnosis methodology for via-switches in the crossbar that diagnoses the fault modes according to the comparator response difference between the normal and faulty via-switches. The proposed method achieves 100% fault detection by checking the comparator responses after turning on/off the via-switch. In case that the number of faulty components in a via-switch is one, the ratio of the fault diagnosis, which exactly identifies the faulty varistor and atom switch inside the faulty via-switch, is 100%, and in case of up to two faults, the fault diagnosis ratio is 79%.

  • A Reversible Data Hiding Method in Compressible Encrypted Images

    Shoko IMAIZUMI  Yusuke IZAWA  Ryoichi HIRASAWA  Hitoshi KIYA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:12
      Page(s):
    1579-1588

    We propose a reversible data hiding (RDH) method in compressible encrypted images called the encryption-then-compression (EtC) images. The proposed method allows us to not only embed a payload in encrypted images but also compress the encrypted images containing the payload. In addition, the proposed RDH method can be applied to both plain images and encrypted ones, and the payload can be extracted flexibly in the encrypted domain or from the decrypted images. Various RDH methods have been studied in the encrypted domain, but they are not considered to be two-domain data hiding, and the resultant images cannot be compressed by using image coding standards, such as JPEG-LS and JPEG 2000. In our experiment, the proposed method shows high performance in terms of lossless compression efficiency by using JPEG-LS and JPEG 2000, data hiding capacity, and marked image quality.

  • More Efficient Trapdoor-Permutation-Based Sequential Aggregate Signatures with Lazy Verification

    Jiaqi ZHAI  Jian LIU  Lusheng CHEN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2020/06/02
      Vol:
    E103-A No:12
      Page(s):
    1640-1646

    Aggregate signature (AS) schemes enable anyone to compress signatures under different keys into one. In sequential aggregate signature (SAS) schemes, the aggregate signature is computed incrementally by the sighers. Several trapdoor-permutation-based SAS have been proposed. In this paper, we give a constructions of SAS based on the first SAS scheme with lazy verification proposed by Brogle et al. in ASIACRYPT 2012. In Brogle et al.'s scheme, the size of the aggregate signature is linear of the number of the signers. In our scheme, the aggregate signature has constant length which satisfies the original ideal of compressing the size of signatures.

  • Compressed Sensing Framework Applying Independent Component Analysis after Undersampling for Reconstructing Electroencephalogram Signals Open Access

    Daisuke KANEMOTO  Shun KATSUMATA  Masao AIHARA  Makoto OHKI  

     
    PAPER-Biometrics

      Pubricized:
    2020/06/22
      Vol:
    E103-A No:12
      Page(s):
    1647-1654

    This paper proposes a novel compressed sensing (CS) framework for reconstructing electroencephalogram (EEG) signals. A feature of this framework is the application of independent component analysis (ICA) to remove the interference from artifacts after undersampling in a data processing unit. Therefore, we can remove the ICA processing block from the sensing unit. In this framework, we used a random undersampling measurement matrix to suppress the Gaussian. The developed framework, in which the discrete cosine transform basis and orthogonal matching pursuit were used, was evaluated using raw EEG signals with a pseudo-model of an eye-blink artifact. The normalized mean square error (NMSE) and correlation coefficient (CC), obtained as the average of 2,000 results, were compared to quantitatively demonstrate the effectiveness of the proposed framework. The evaluation results of the NMSE and CC showed that the proposed framework could remove the interference from the artifacts under a high compression ratio.

  • An Optimal Power Allocation Scheme for Device-to-Device Communications in a Cellular OFDM System

    Gil-Mo KANG  Cheolsoo PARK  Oh-Soon SHIN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/06/02
      Vol:
    E103-A No:12
      Page(s):
    1670-1673

    We propose an optimal power allocation scheme that maximizes the transmission rate of device-to-device (D2D) communications underlaying a cellular system based on orthogonal frequency division multiplexing (OFDM). The proposed algorithm first calculates the maximum allowed transmission power of a D2D transmitter to restrict the interference caused to a cellular link that share the same OFDM subchannels with the D2D link. Then, with a constraint on the maximum transmit power, an optimization of water-filling type is performed to find the optimal transmit power allocation across subchannels and within each subchannel. The performance of the proposed power allocation scheme is evaluated in terms of the average achievable rate of the D2D link.

  • ECG Classification with Multi-Scale Deep Features Based on Adaptive Beat-Segmentation

    Huan SUN  Yuchun GUO  Yishuai CHEN  Bin CHEN  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1403-1410

    Recently, the ECG-based diagnosis system based on wearable devices has attracted more and more attention of researchers. Existing studies have achieved high classification accuracy by using deep neural networks (DNNs), but there are still some problems, such as: imprecise heart beat segmentation, inadequate use of medical knowledge, the same treatment of features with different importance. To address these problems, this paper: 1) proposes an adaptive segmenting-reshaping method to acquire abundant useful samples; 2) builds a set of hand-crafted features and deep features on the inner-beat, beat and inter-beat scale by integrating enough medical knowledge. 3) introduced a modified channel attention module (CAM) to augment the significant channels in deep features. Following the Association for Advancement of Medical Instrumentation (AAMI) recommendation, we classified the dataset into four classes and validated our algorithm on the MIT-BIH database. Experiments show that the accuracy of our model reaches 96.94%, a 3.71% increase over that of a state-of-the-art alternative.

  • A Social Collaborative Filtering Method to Alleviate Data Sparsity Based on Graph Convolutional Networks

    Haitao XIE  Qingtao FAN  Qian XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/08/28
      Vol:
    E103-D No:12
      Page(s):
    2611-2619

    Nowadays recommender systems (RS) keep drawing attention from academia, and collaborative filtering (CF) is the most successful technique for building RS. To overcome the inherent limitation, which is referred to as data sparsity in CF, various solutions are proposed to incorporate additional social information into recommendation processes, such as trust networks. However, existing methods suffer from multi-source data integration (i.e., fusion of social information and ratings), which is the basis for similarity calculation of user preferences. To this end, we propose a social collaborative filtering method based on novel trust metrics. Firstly, we use Graph Convolutional Networks (GCNs) to learn the associations between social information and user ratings while considering the underlying social network structures. Secondly, we measure the direct-trust values between neighbors by representing multi-source data as user ratings on popular items, and then calculate the indirect-trust values based on trust propagations. Thirdly, we employ all trust values to create a social regularization in user-item rating matrix factorization in order to avoid overfittings. The experiments on real datasets show that our approach outperforms the other state-of-the-art methods on usage of multi-source data to alleviate data sparsity.

  • DNN-Based Full-Band Speech Synthesis Using GMM Approximation of Spectral Envelope

    Junya KOGUCHI  Shinnosuke TAKAMICHI  Masanori MORISE  Hiroshi SARUWATARI  Shigeki SAGAYAMA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/09/03
      Vol:
    E103-D No:12
      Page(s):
    2673-2681

    We propose a speech analysis-synthesis and deep neural network (DNN)-based text-to-speech (TTS) synthesis framework using Gaussian mixture model (GMM)-based approximation of full-band spectral envelopes. GMMs have excellent properties as acoustic features in statistic parametric speech synthesis. Each Gaussian function of a GMM fits the local resonance of the spectrum. The GMM retains the fine spectral envelope and achieve high controllability of the structure. However, since conventional speech analysis methods (i.e., GMM parameter estimation) have been formulated for a narrow-band speech, they degrade the quality of synthetic speech. Moreover, a DNN-based TTS synthesis method using GMM-based approximation has not been formulated in spite of its excellent expressive ability. Therefore, we employ peak-picking-based initialization for full-band speech analysis to provide better initialization for iterative estimation of the GMM parameters. We introduce not only prediction error of GMM parameters but also reconstruction error of the spectral envelopes as objective criteria for training DNN. Furthermore, we propose a method for multi-task learning based on minimizing these errors simultaneously. We also propose a post-filter based on variance scaling of the GMM for our framework to enhance synthetic speech. Experimental results from evaluating our framework indicated that 1) the initialization method of our framework outperformed the conventional one in the quality of analysis-synthesized speech; 2) introducing the reconstruction error in DNN training significantly improved the synthetic speech; 3) our variance-scaling-based post-filter further improved the synthetic speech.

  • Online Signature Verification Using Single-Template Matching Through Locally and Globally Weighted Dynamic Time Warping

    Manabu OKAWA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/09/01
      Vol:
    E103-D No:12
      Page(s):
    2701-2708

    In this paper, we propose a novel single-template strategy based on a mean template set and locally/globally weighted dynamic time warping (LG-DTW) to improve the performance of online signature verification. Specifically, in the enrollment phase, we implement a time series averaging method, Euclidean barycenter-based DTW barycenter averaging, to obtain a mean template set considering intra-user variability among reference samples. Then, we acquire a local weighting estimate considering a local stability sequence that is obtained analyzing multiple matching points of an optimal match between the mean template and reference sets. Thereafter, we derive a global weighting estimate based on the variable importance estimated by gradient boosting. Finally, in the verification phase, we apply both local and global weighting methods to acquire a discriminative LG-DTW distance between the mean template set and a query sample. Experimental results obtained on the public SVC2004 Task2 and MCYT-100 signature datasets confirm the effectiveness of the proposed method for online signature verification.

  • Experimental Validation of Link Quality Prediction Using Exact Self-Status of Mobility Robots in Wireless LAN Systems Open Access

    Riichi KUDO  Matthew COCHRANE  Kahoko TAKAHASHI  Takeru INOUE  Kohei MIZUNO  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1385-1393

    Autonomous mobility machines, such as self-driving cars, transportation robots, and automated construction machines, are promising to support or enrich human lives. To further improve such machines, they will be connected to the network via wireless links to be managed, monitored, or remotely operated. The autonomous mobility machines must have self-status based on their positioning system to safely conduct their operations without colliding with other objects. The self-status is not only essential for machine operation but also it is valuable for wireless link quality management. This paper presents self-status-based wireless link quality prediction and evaluates its performance by using a prototype mobility robot combined with a wireless LAN system. The developed robot has functions to measure the throughput and receive signal strength indication and obtain self-status details such as location, direction, and odometry data. Prediction performance is evaluated in offline processing by using the dataset gathered in an indoor experiment. The experiments clarified that, in the 5.6 GHz band, link quality prediction using self-status of the robot forecasted the throughput several seconds into the future, and the prediction accuracies were investigated as dependent on time window size of the target throughput, bandwidth, and frequency gap.

  • Collaborative Illustrator with Android Tablets Communicating through WebRTC

    Shougo INOUE  Satoshi FUJITA  

     
    PAPER-Computer System

      Pubricized:
    2020/08/13
      Vol:
    E103-D No:12
      Page(s):
    2518-2524

    In this paper, we consider the collaborative editing of two-dimensional (2D) data such as handwritten letters and illustrations. In contrast to the editing of 1D data, which is generally realized by the combination of insertion/deletion of characters, overriding of strokes can have a specific meaning in editing 2D data. In other words, the appearance of the resulting picture depends on the reflection order of strokes to the shared canvas in addition of the absolute coordinate of the strokes. We propose a Peer-to-Peer (P2P) collaborative drawing system consisting of several nodes with replica canvas, in which the consistency among replica canvases is maintained through data channel of WebRTC. The system supports three editing modes concerned with the reflection order of strokes generated by different users. The result of experiments indicates that the proposed system realizes a short latency of around 120 ms, which is a half of a cloud-based system implemented with Firebase Realtime Database. In addition, it realizes a smooth drawing of pictures on remote canvases with a refresh rate of 12 fps.

  • Novel Multi-Objective Design Approach for Cantilever of Relay Contact Using Preference Set-Based Design Method

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Pubricized:
    2020/07/03
      Vol:
    E103-C No:12
      Page(s):
    713-717

    In the design of electrical contacts, it is required to pursue a solution which satisfies simultaneously multi-objective (electrical, mechanical, and thermal) performances including conflicting requirements. Preference Set-Based Design (PSD) has been proposed as practical procedure of the fuzzy set-based design method. This brief paper newly attempts to propose a concurrent design method by PSD to electrical contact, specifically a design of a shape of cantilever in relay contacts. In order to reduce the calculation (and/or experimental) cost, this paper newly attempt to apply Design of Experiments (DoE) for meta-modeling to PSD. The number of the calculation for the meta-modeling can be reduced to $ rac{1}{729}$ by using DoE. The design parameters (width and length) of a cantilever for drive an electrical contact, which satisfy required performance (target deflection), are obtained in ranges successfully by PSD. The validity of the design parameters is demonstrated by numerical modeling.

  • Circuit Modeling of Wireless Power Transfer System in the Vicinity of Perfectly Conducting Scatterer

    Nozomi HAGA  Jerdvisanop CHAKAROTHAI  Keisuke KONNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/06/22
      Vol:
    E103-B No:12
      Page(s):
    1411-1420

    The impedance expansion method (IEM) is a circuit-modeling technique for electrically small devices based on the method of moments. In a previous study, a circuit model of a wireless power transfer (WPT) system was developed by utilizing the IEM and eigenmode analysis. However, this technique assumes that all the coupling elements (e.g., feeding loops and resonant coils) are in the absence of neighboring scatters (e.g., bodies of vehicles). This study extends the theory of the IEM to obtain the circuit model of a WPT system in the vicinity of a perfectly conducting scatterer (PCS). The numerical results show that the proposed method can be applied to the frequencies at which the dimension of the PCS is less than approximately a quarter wavelength. In addition, the yielded circuit model is found to be valid at the operating frequency band.

  • Pilot Decontamination in Massive MIMO Uplink via Approximate Message-Passing

    Takumi FUJITSUKA  Keigo TAKEUCHI  

     
    PAPER-Communication Theory

      Pubricized:
    2020/07/01
      Vol:
    E103-A No:12
      Page(s):
    1356-1366

    Pilot contamination is addressed in massive multiple-input multiple-output (MIMO) uplink. The main ideas of pilot decontamination are twofold: One is to design transmission timing of pilot sequences such that the pilot transmission periods in different cells do not fully overlap with each other, as considered in previous works. The other is joint channel and data estimation via approximate message-passing (AMP) for bilinear inference. The convergence property of conventional AMP is bad in bilinear inference problems, so that adaptive damping was required to help conventional AMP converge. The main contribution of this paper is a modification of the update rules in conventional AMP to improve the convergence property of AMP. Numerical simulations show that the proposed AMP outperforms conventional AMP in terms of estimation performance when adaptive damping is not used. Furthermore, it achieves better performance than state-of-the-art methods based on subspace estimation when the power difference between cells is small.

  • A Bayesian Decision-Theoretic Change-Point Detection for i.p.i.d. Sources

    Kairi SUZUKI  Akira KAMATSUKA  Toshiyasu MATSUSHIMA  

     
    PAPER-Machine Learning

      Vol:
    E103-A No:12
      Page(s):
    1393-1402

    Change-point detection is the problem of finding points of time when a probability distribution of samples changed. There are various related problems, such as estimating the number of the change-points and estimating magnitude of the change. Though various statistical models have been assumed in the field of change-point detection, we particularly deal with i.p.i.d. (independent-piecewise-identically-distributed) sources. In this paper, we formulate the related problems in a general manner based on statistical decision theory. Then we derive optimal estimators for the problems under the Bayes risk principle. We also propose efficient algorithms for the change-point detection-related problems in the i.p.i.d. sources, while in general, the optimal estimations requires huge amount of calculation in Bayesian setting. Comparison of the proposed algorithm and previous methods are made through numerical examples.

  • WiFi Fingerprint Based Indoor Positioning Systems Using Estimated Reference Locations

    Myat Hsu AUNG  Hiroshi TSUTSUI  Yoshikazu MIYANAGA  

     
    PAPER-WiFi

      Vol:
    E103-A No:12
      Page(s):
    1483-1493

    In this paper, we propose a WiFi-based indoor positioning system using a fingerprint method, whose database is constructed with estimated reference locations. The reference locations and their information, called data sets in this paper, are obtained by moving reference devices at a constant speed while gathering information of available access points (APs). In this approach, the reference locations can be estimated using the velocity without any precise reference location information. Therefore, the cost of database construction can be dramatically reduced. However, each data set includes some errors due to such as the fluctuation of received signal strength indicator (RSSI) values, the device-specific WiFi sensitivities, the AP installations, and removals. In this paper, we propose a method to merge data sets to construct a consistent database suppressing such undesired effects. The proposed approach assumes that the intervals of reference locations in the database are constant and that the fingerprint for each reference location is calculated from multiple data sets. Through experimental results, we reveal that our approach can achieve an accuracy of 80%. We also show a detailed discussion on the results related parameters in the proposed approach.

1141-1160hit(16314hit)