The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

15321-15340hit(16314hit)

  • Image Synthesis Based on Estimation of Camera Parameters from Image Sequence

    Jong-Il PARK  Nobuyuki YAGI  Kazumasa ENAMI  

     
    PAPER

      Vol:
    E77-D No:9
      Page(s):
    973-986

    This paper describes an image synthesis method based on an estimation of camera parameters. In order to acquire high quality images using image synthesis, we take some constraints into account, which include angle of view, synchronization of change of scale and change of viewing direction. The proposed method is based on an investigation that any camera operation containing a change of scale and a pure 3D rotation can be represented by a 2D geometric transformation. The transformation can explain all the synthesis procedure consisting of locating, synchronizing, and operating images. The procedure is described based on a virtual camera which is constituted of a virtual viewing point and a virtual image plain. The method can be efficiently implemented in such a way that each image to be synthesized undergoes the transformation only one time. The parameters in the image transformation are estimated from image sequence. The estimation scheme consists of first establishing correspondence and then estimating the parameters by fitting the correspondence data to the transformation model. We present experimental results and show the validity of the proposed method.

  • Generalized and Partial FFT

    Todor COOKLEV  Akinori NISHIHARA  

     
    PAPER-Orthogonal Transform

      Vol:
    E77-A No:9
      Page(s):
    1466-1474

    The relation between computing part of the FFT spectrum and the so-called generalized FFT (GFFT) is clarified, leading to a new algorithm for performing partial FFTs. The method can be applied when only part of the output is required or when the input data sequence contains many zeros. Such cases arize for example in decimation and interpolation and also in computing linear convolutions. The technique consists of decomposing the DFT into several generalized DFTs. Efficient algorithms for these generalized DFTs exist. The computational complexity of the new approach is roughly equal to the complexity of previous techniques, but the structure is superior, because only one type of butterfly is used and a few lines of code are sufficient. The theoretical properties of the GDFT are given. The case of multidimensional signals, defined on arbitrary sampling lattices is also considered.

  • Buffer Sharing in Conflict-Free WDMA Networks

    Ming CHEN  Tak-Shing Peter YUM  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:9
      Page(s):
    1144-1151

    A Wavelength Division Multiaccess (WDMA) network with buffer sharing among stations is studied. All stations in the network are connected to a passive optical star coupler and each station has a different fixed wavelength laser for transmitting packets. Each station in the network reports its packet backlog to a scheduler which computes and then broadcasts a transmission schedule to all the stations through a control channel in each time slot. A transmission schedule includes two types of assignments: 1) assign a maximum number of stations for conflict-free transmissions, and 2) assign the relocation of packets from congested stations to uncongested relaying stations through idling transceivers for distributed buffer sharing. The first assignment aims at maximizing throughput and the second assignment aims at minimizing packet loss. Simulation results show that as much as 75% of the buffers can be saved with the use of buffer sharing when 50% of the packets are of the non-sequenced type.

  • 2-D Variable FIR Filters Using 3-D Prototype Filters

    Toshiyuki YOSHIDA  Akinori NISHIHARA  Nobuo FUJII  

     
    LETTER-Parallel/Multidimensional Signal Processing

      Vol:
    E77-A No:9
      Page(s):
    1568-1572

    This paper discusses a new design method for 2-D variable FIR digital filters, which is an extension of our previous work for 1-D case. The method uses a 3-D prototype FIR filter whose cross-sections correspond to the desired characteristics of 2-D variable FIR filters. A 2-D variable-angle FIR fan filter is given as a design example.

  • Improved Contextual Classifiers of Multispectral Image Data

    Takashi WATANABE  Hitoshi SUZUKI  Sumio TANBA  Ryuzo YOKOYAMA  

     
    PAPER-Image Processing

      Vol:
    E77-A No:9
      Page(s):
    1445-1450

    Contextual classification of multispectral image data in remote sensing is discussed and concretely two improved contextual classifiers are proposed. The first is the extended adaptive classifier which partitions an image successively into homogeneously distributed square regions and applies a collective classification decision to each region. The second is the accelerated probabilistic relaxation which updates a classification result fast by adopting a pixelwise stopping rule. The evaluation experiment with a pseudo LANDSAT multispectral image shows that the proposed methods give higher classification accuracies than the compound decision method known as a standard contextual classifier.

  • Mobile Service Control Point for Intelligent and Multimedia Mobile Communications

    Hiroshi NAKAMURA  Kenichi KIMURA  Akihisa NAKAJIMA  

     
    PAPER

      Vol:
    E77-B No:9
      Page(s):
    1089-1095

    To provide personal, intelligent, and multimedia services through a mobile communications network, a Mobile Service Control Point (M-SCP) was developed, which performs both the location register and service control functions. The M-SCP was constructed on a common platform to allow quick introduction of new services. Software techniques to reduce the frequency of process-switching, assign the highest priority to real-time tasks, and operate a multiple-CPU structure provide faster real-time processing. This is confirmed by computer simulation and research in the field.

  • M-LCELP Speech Coding at 4kb/s with Multi-Mode and Multi-Codebook

    Kazunori OZAWA  Masahiro SERIZAWA  Toshiki MIYANO  Toshiyuki NOMURA  Masao IKEKAWA  Shin-ichi TAUMI  

     
    PAPER

      Vol:
    E77-B No:9
      Page(s):
    1114-1121

    This paper presents the M-LCELP (Multi-mode Learned Code Excited LPC) speech coder, which has been developed for the next generation half-rate digital cellular telephone systems. M-LCELP develops the following techniques to achieve high-quality synthetic speech at 4kb/s with practically reasonable computation and memory requirements: (1) Multi-mode and multi-codebook coding to improve coding efficiency, (2) Pitch lag differential coding with pitch tracking to reduce lag transmission rate, (3) A two-stage joint design regular-pulse codebook with common phase structure in voiced frames, to drastically reduce computation and memory requirements, (4) An efficient vector quantization for LSP parameters, (5) An adaptive MA type comb filter to suppress excitation signal inter-harmonic noise. The MOS subjective test results demonstrate that 4.075kb/s M-LCELP synthetic speech quality is mostly equivalent to that for a North American full-rate standard VSELP coder. M-LCELP codec requires 18 MOPS computation amount. The codec has been implemented using 2 floating-point dsp chips.

  • Computer Error Analysis of Rainfall Rates Measured by a C-Band Dual-Polarization Radar

    Yuji OHSAKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:9
      Page(s):
    1162-1170

    Radar signals fluctuate because of the incoherent scattering of raindrops. Dual-polarization radar estimates rainfall rates from differential reflectivity (ZDR) and horizontal reflectivity (ZH). Here, ZDR and ZH are extracted from fluctuating radar signals by averaging. Therefore, instrumentally measured ZDR and ZH always have errors, so that estimated rainfall rates also have errors. This paper evaluates rainfall rate errors caused by signal fluctuation. Computer simulation based on a physical raindrop model is used to investigate the standard deviation of rainfall rate. The simulation considers acquisition time, and uses both simultaneous and alternate sampling of horizontal and vertical polarizations for square law and logarithmic estimators at various rainfall rates and elevation angles. When measuring rainfall rates that range from 1.0 to 10.0mm/h with the alternate sampling method, using a logarithmic estimator at a relatively large elevation angle, the estimated rainfall rates have significant errors. The simultaneous sampling method is effective in reducing these errors.

  • Analysis of Modes in a Vertical Cavity Surface Emitting Laser with Multilayer Bragg Reflectors

    Seiji MUKAI  Masanobu WATANABE  Hiroyoshi YAJIMA  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:9
      Page(s):
    1479-1488

    A numerical method is introduced which is suitable for mode analysis in an optical resonator with complicated refractive-index variations such as vertical cavity surface emitting lasers (VCSELs). In this method, the optical field of a laser mode is expressed as a linear combination of component fields with their coefficents to be determined. After a hypothetical boundary is set surrounding the region to be analyzed, the component fields are obtained by numerically integrating the wave equation in the inside region using the conditions on part of the boundary as the initial values of the integration. The total field, which is a linear combination of these fields, satisfies the equation and the selected part of the boundary conditions regardless of the coefficients. The conditions imposed on the total field on the rest of the boundary lead to a matrix eigenvalue problem, from which the optical frequency and the coefficients are obtained. The matrix expresses only boundary conditions and, therefore, its size is much smaller than that of a matrix expressing bulk conditions, as appears in the finite element method or the finite difference method. At the same time, this method has the advantage of adaptability for graded-index problems in contrast to conventional boundary formalisms such as the boundary element method and the mode matching method, because in the present method the component fields (or base functions) are calculated for individual index distributions while in these methods an inflexible set of base functions is used. As an example of the application of the method, mode properties in gain-guided VCSELs are analyzed using this method based on a two-dimensional model. This is the first model that takes into account the effects of standing-wave formation in the resonator and of the incident angle- and polarization-dependence of reflectivity. The ability to treat these effects makes the present method suitable for VCSELs equipped with a thin active layer and with multi-layer reflectors. Basic properties including polarization, threshold gain, oscillation wavelegths, and deflection of far-field patterns have been predicted for various cavity sizes and for various gradients in gain distributions. The major results of the analysis are: TE modes have lower thresholds than TM modes; the laser beam can be steered by tailoring the gain distribution as with edge-emitting lasers.

  • High-Performance Small-Scale Collector-Up AlGaAs/GaAs HBT's with a Carbon-Doped Base Fabricated Using Oxygen-Ion Implantation

    Shoji YAMAHATA  Yutaka MATSUOKA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1437-1443

    We report the development of high-performance small-scale AlGaAs/GaAs collector-up heterojunction bipolar transistors (C-up HBT) with a carbon (C)-doped base layer. Oxygen-ion (O+) implantation is used to define their intrinsic emitter/base junctions and zinc (Zn)-diffusion is used to lower the resistivity of their O+-implanted extrinsic base layers. The highly resistive O+-implanted AlGaAs layer in the extrinsic emitter region sufficiently suppresses electron injection even under high-forward-bias conditions, allowing high collector current densities. The use of a C-doped base is especially effective for small-scale C-up HBT's because it suppresses the undesirable turn-on voltage shift caused by base dopant diffusion in the intrinsic area around the collector-mesa perimeter that occurs during the high-temperature Zn-diffusion process after implantation. Even in a small-scale trasistor with a 2 µm2 µm collector, a current gain of 15 is obtained. A microwave transistor with a 2 µm10 µm collector has a cutoff frequency fT of 68 GHz and a maximum oscillation frequency fmax of 102 GHz. A small-scale C-up HBT with a 2 µm2 µm collector shows a higher fmax of 110 GHz due to reduced base/collector capacitance CBC and its fmax remains above 100 GHz, even at a low collector current of 1 mA. The CBC of this device is estimated to be as low as 2.2 fF. Current gain dependence on collector size is also investigated for C-up HBT's and it is found that the base recombination current around the collector-mesa perimeter reduces the current gain.

  • Selective Growth of GaAs by Pulsed-Jet Epitaxy

    Yoshiki SAKUMA  Shunich MUTO  Naoki YOKOYAMA  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1414-1419

    We studied the selective epitaxy of GaAs grown by a technique called pulsed-jet epitaxy. Pulsed-jet epitaxy is a kind of atomic layer epitaxy (ALE) based on low-pressure metalorganic vapor-phase epitaxy (MOVPE). We compared growth behavior and layers grown by ALE and MOVPE. During ALE we supplied trimethylgallium (TMGa) and arsine (AsH3) alternately; however, during MOVPE we supplied TMGa and AsH3 simultaneously. At a growth temperature of 500, we obtained a better growth selectivity using ALE than using MOVPE. The lateral thickness profile of the ALE-grown GaAs layer at the edge of SiO2 mask was uniform. In contrast, the MOVPE growth rate was enhanced near the mask edge. Using ALE, we selectively grew GaAs epilayers even at mask openings with submicron widths. Scanning electron microscopy revealed that the ALE selectively grown structures had an uniform thickness profile, though the facets surrounding the structures depended on the orientation of mask stripes. After MOVPE, however, the (001) surface of the deposited layer was not flat because of the additional lateral diffusion of the growth species from the gas phase and/or the mask surface and some crystal facets. The experimental results show that, using ALE, we can control the shape of selectively grown structures. Selective epitaxy by ALE is a promising technique for fabricating low-dimensional quantum effect devices.

  • VLSI Systolic Array for SRIF Digital Signal Processing Algorithm

    Kazuhiko IWAMI  Koji TANAKA  

     
    PAPER-Digital Signal Processing Hardware

      Vol:
    E77-A No:9
      Page(s):
    1475-1483

    Kalman filter is an essential tool in signal processing, modern control and communications. The filter estimates the states of a given system from noisy measurements, using a mean-square error criterion. Although Kalman filter has been shown to be very versatile, it has always been computationally intensive since a great number of matrix computations must be performed at each iteration. Thus the exploitation of this technique in broadband real time applications is restricted. The solution to these limitations appears to be in VLSI (very large scale integration) architectures for the parallel processing of data, in the form of systolic architectures. Systolic arrays are networks of simple processing cells connected only to their nearest neighbors. Each cell consists of some simple logic and has a small amount of local memory. Overall data flows through the array are synchronously controlled by a single main clock pulse. In parallel with the development of Kalman filter, the square root covariance and the square root information methods have been studied in the past. These square root methods are reported to be more accurate, stable and efficient than the original algorithm presented by Kalman. However it is known that standard SRIF is less efficient than the other algorithms, simply because standard SRIF has additional matrix inversion computation and matrix multiplication which are difficult to implement in terms of speed and accuracy. To solve this problem, we use the modified Faddeeva algorithm in computing matrix inversion and matrix multiplication. The proposed algorithm avoids the direct matrix inversion computation and matrix multiplication, and performs these matrix manipulations by Gauss elimination. To evaluate the proposed method, we constructed an efficient systolic architecture for standard SRIF using the COMPASS design tools. Actual VLSI design and its simulation are done on the circuits of four type processors that perform Gauss elimination and the modified Givens rotation.

  • Multilevel RLL (D,K,l) Constrained Sequences

    Oscar Yassuo TAKESHITA  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1238-1245

    Multilevel RLL (Runlength Limited) sequences are analyzed. Their noiseless capacity and lower bounds on the channel capacity in the presence of additive white Gaussian noise are given. Moreover, the analytical power spectra formulae for those sequences which generalize the previously derived one for binary sequences are newly derived. We conclude from the analysis of the power spectra that multilevel RLL sequences are attractive from the point of view that they increase information rate while keeping low DC-content and self-clocking capability of binary RLL sequences.

  • Automatic Seal Imprint Verification System with Imprint Quality Assessment Function and Its Performance Evaluation

    Katsuhiko UEDA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:8
      Page(s):
    885-894

    An annoying problem encountered in automatic seal imprint verification is that for seal imprints may have a lot of variations, even if they are all produced from a single seal. This paper proposes a new automatic seal imprint verification system which adds an imprint quality assessment function to our previous system in order to solve this problem, and also examines the verification performance of this system experimentally. This system consists of an imprint quality assessment process and a verification process. In the imprint quality assessment process, an examined imprint is first divided into partial regions. Each partial region is classified into one of three quality classes (good quality region, poor quality region, and background) on the basis of characteristics of its gray level histogram. In the verification process, only good quality partial regions of an examined imprint are verified with registered one. Finally, the examined imprint is classified as one of two types: a genuine and a forgery. However, as a result of quality assessment, if the partial regions classified as poor quality are too many, the examined imprint is classified as ambiguous" without verification processing. A major advantage of this verification system is that this system can verify seal imprints of various qualities efficiently and accurately. Computer experiments with real seal imprints were performed by using this system, previous system (without image quality assessment function) and document examiners of a bank. The results of these experiments show that this system is superior in the verification performance to our previous system, and has a similar verification performance to that of document examiners (i.e., the experimental results show the effectiveness of adding the image quality assessment function to a seal imprint verification system).

  • Design of Repairable Cellular Arrays on Multiple-Valued Logic

    Naotake KAMIURA  Yutaka HATA  Kazuharu YAMATO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E77-D No:8
      Page(s):
    877-884

    This paper proposes a repairable and diagnosable k-valued cellular array. We assume a single fault, i.e., either stuck-at-O fault or stuck-at-(k1) fault of switches occurs in the array. By building in a duplicate column iteratively, when a stuck-at-(k1) fault occurs in the array, the fault never influences the output of the array. That is, we can construct a fault-tolerant array for the stuck-at-(k1) fault. While, for the stuck-at-O fault, the diagnosing method is simple and easy because we don't have to diagnose the stuck-at-(k1) fault. Moreover, our array can be repaired easily for the fault. The comparison with other rectangular arrays shows that our array has advantages for the number of cells and the cost of the fault diagnosis.

  • Highly Reliable Flash Memories Fabricated by in-situ Multiple Rapid Thermal Processing

    Takahisa HAYASHI  Yoshiyuki KAWAZU  Akira UCHIYAMA  Hisashi FUKUDA  

     
    PAPER-Non-volatile Memory

      Vol:
    E77-C No:8
      Page(s):
    1270-1278

    We propose, for the first time, highly reliable flash-type EEPROM cell fabrication using in-situ multiple rapid thermal processing (RTP) technology. In this study, rapid thermal oxynitridation tunnel oxide (RTONO) film formations followed by in-situ arsenic (As)-doped floating-gate polysilicon growth by rapid thermal chemical vapor deposition (RTCVD) technologies are fully utilized. The results show that after 5104 program/erase (P/E) endurance cycles, the conventional cell shows 65% narrowing of the threshold voltage (Vt) window, whereas the RTONO cell indicates narrowing of less than 20%. A large number of nitrogen atoms (1020 atoms/cm3) are confirmed by secondary ion mass spectrometry (SIMS), pile up at the SiO2/Si interface and distribute into bulk SiO2. It is considered that in the RTONO film stable Si-N bonds are formed which minimize electron trap generation as well as the neutral defect density, resulting in lower Vt shifts in P/E stress. In addition, the RTONO film reduces the number of hydrogen atoms because of final N2O oxynitridation. The SIMS data shows that by the in-situ RTCVD process As atoms (91020 atoms/cm3) are incorporated uniformly into 1000--thick film. Moreover, the RTCVD polysilicon film indicates an extremely flat surface. The time-dependent dielectric breakdown (TDDB) characteristics of interpoly oxide-nitride-oxide (ONO) film exhibited no defect-related breakdown and 5 times longer breakdown time as compared to phosphorus-doped polysilicon film. Therefore, the flash-EEPROM cell fabricated has good charge storing capability.

  • The Improvement of Compositional Distribution in Depth and Surface Morphology of YBa2Cu3O7-δ-SrTiOx Multilayers

    Chien Chen DIAO  Gin-ichiro OYA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1209-1217

    Almost stoichiometric YBa2Cu3O7-δ(110) or (103) and SrTiOx(110) films, and multilayer films consisting of them have successfully been grown epitaxially on hot SrTiO3 substrates by 90off-axis rf magnetron sputtering with facing targets. Their whole composition, compositional distribution in depth, crystallinity and surface morphology were examined by inductively coupled plasma spectroscopy, Auger electron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy or atomic force microscope, respectively. When any YBa2Cu3O7-δ film was exposed to air after deposition, a Ba-rich layer was formed in a near surface region of the film. However, such a compositional distribution in depth of the film was improved by in situ deposition of a SrTiOx film on it. Moreover, the surface roughness of the YBa2Cu3O7-δ film was improved by predeposition of a SrTiOx film under it. On the basis of these results, both YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiO3(sub.) and YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiOx/SrTiO3(sub.) multilayer films with average surface roughness of 3 nm were grown reproducibly, which had uniform compositional distribution throughout the depth of the film except a near surface region of the top YBa2Cu3O7-δ layer. A new 222 structure described by Sr8Ti8O20 (Sr2Ti2O5) with a long range ordered arrangement of oxygen vacancies was formed in the SrTiOx films deposited epitaxially on YBa2Cu3O7-δ films.

  • Dynamic Swapping Schemes and Differential Cryptanalysis

    Toshinobu KANEKO  Kenji KOYAMA  Routo TERADA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1328-1336

    This paper proposes a dynamically randomized version of DES (called RDES) in which a input-dependent swapping Sk(X) is added onto the right half of the input in each round of DES. This new scheme decreases the probability of success in differential cryptanalysis because it decreases the characteristic probability. Each "best" two-round characteristic probability is analyzed for typical schemes of the RDES: (i) RDES-1 with a simple one-level swapping, (ii) RDES-1' with an optimal one-level swapping, (iii) RDES-2 with a simple two-level swapping, and (iv) RDES-2' with an optimal two-level swapping. The main results are as follows. (a) The differential attacks on the 16-round RDES-1' and the 16-round RDES-2 require more computational time than the exhaustive search. (b) A differential attack is substantially inapplicable to the 16-round RDES-2' because more than 263 chosen plaintext pairs are required. (c) The encryption/decryption speed of the n-round RDES is almost the same as that of the n-round DES.

  • Pipelining Gauss Seidel Method for Analysis of Discrete Time Cellular Neural Networks

    Naohiko SHIMIZU  Gui-Xin CHENG  Munemitsu IKEGAMI  Yoshinori NAKAMURA  Mamoru TANAKA  

     
    PAPER-Neural Networks

      Vol:
    E77-A No:8
      Page(s):
    1396-1403

    This paper describes a pipelining universal system of discrete time cellular neural networks (DTCNNs). The new relaxation-based algorithm which is called a Pipelining Gauss Seidel (PGS) method is used to solve the CNN state equations in pipelining. In the systolic system of N processor elements {PEi}, each PEi performs the convolusional computation (CC) of all cells and the preceding PEi-1 performs the CC of all cells taking precedence over it by the precedence interval number p. The expected maximum number of PE's for the speeding up is given by n/p where n means the number of cells. For its application, the encoding and decoding process of moving images is simulated.

  • Performance of a Modified Symbol-Rate-Increased TC-2mQAM

    Hirokazu TANAKA  Tomoto K. MATSUSHIMA  

     
    LETTER

      Vol:
    E77-A No:8
      Page(s):
    1378-1380

    In this paper, trellis coded modulation with bandwidth expansion is examined. The proposed scheme is a modified Symbol-rate-increased TCM [3]-[5], which allows the bandwidth expansion ratio to be varied to an arbitrary value. The Symbol-rate-increased TCM has been shown to be a particular case of the proposed scheme. Simulation results have clarified that the proposed scheme achieves a significant improvement over an uncoded scheme in an AWGN channel.

15321-15340hit(16314hit)