The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SIC(469hit)

421-440hit(469hit)

  • A New Physical Contact Connection Method Using the Buckling Force of Optical Fiber

    Masaru KOBAYASHI  Shin'ichi IWANO  Ryo NAGASE  Seiko MITACHI  

     
    PAPER-Components

      Vol:
    E80-C No:2
      Page(s):
    334-339

    Fiber physical contact (FPC) is proposed and demonstrated as a new method designed to enable fibers to be connected easily with a small structure while maintaining high optical performance. FPC is performed by mating two bare optical fibers in a micro sleeve and fixing them to a holder while they are buckled. Buckling is a phenomenon whereby a long column is bent by compression along its length. PC connection is realized by the buckling force of the fibers themselves and does not require any springs. Optical fiber buckling is studied both theoretically and experimentally. The buckling force, which is determined by an initial span between the optical fiber holding points, remains constant when the span is changed and is useful as the PC force. The buckling amplitude which is determined by the span reduction must be so small that it does not cause excess radiation loss. A suitable span is about 7 mm. This generates a 0.7 N. The allowed span reduction is 0.1 mm. This results in a buckling amplitude of 0.64 mm which prevents radiation losses of above 0.1 dB for 1.31 µm light. Based on a study of fiber buckling, we demonstrate the optical performance for FPC connection with a 0.126 mm diameter micro sleeve in which optical fibers are mated and with polished fiber end faces. The insertion loss is under 0.3 dB and the average return loss is 50 dB for 1.31 µm light. These values are stable in the 20 to 70 temperature range. We confirm that FPC connection realizes high optical performance with a small simple structure.

  • Implementation of a Digital Signal Processor in a DBF Self-Beam-Steering Array Antenna

    Toyohisa TANAKA  Ryu MIURA  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:1
      Page(s):
    166-175

    We have proposed a digital beamforming (DBF) self-beam-steering array antenna which features maximal ratio combining enabling it to efficiently use the received power or to rapidly track the desired signal. The DBF self-beam-steering array antenna utilizes digital signal processing with an active array antenna configuration. ASIC implementation of the digital signal processor is inevitable for DBF antenna application in practical mobile communications environments. In this paper, we present a scheme for implementing a digital signal processor in ASICs using ten FPGAs (Field Programmable Gate Arrays) for the DBF self-beam-steering array antenna. Results of some experiments obtained in a large radio anechoic chamber are shown to confirm a basic function of the system.

  • Fully Digital Burst Modem for Satellite Multimedia Communication Systems

    Kiyoshi KOBAYASHI  Tetsu SAKATA  Yoichi MATSUMOTO  Shuji KUBOTA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    8-15

    This paper presents fully digital high speed (17.6Mb/s) burst modem for Offset Quadrature Phase Shift Keying (OQPSK), which employs novel digital modem VLSICs. The modulator VLSIC directly generates modulated intermediate frequency (IF) signals in a fully digitalized manner. A newly proposed digital reverse-modulation and pre-filtered carrier filter-limiter scheme realizes low power consumption and stable operation in a low Eb/No condition. The demodulator VLSIC also achieves fast bit-timing acquisition in burst mode. Moreover, it supports stable initial burst acquisition by a novel automatic frequency control (AFC) acquisition detector and a digital burst detector. A digital burst automatic gain control (AGC) compensates burst-to-burst level differences without analog circutits. Performance evaluation results show that the new modem achieves satisfactory bit-error-rate performance in severe environments. The developed modem has been employed in a commercial portable earth station for ISDN services and reduces the hardware size to one third that of the conventional one.

  • Resolution Improvement of the MUSIC Algorithm Utilizing Two Differently Polarized Antennas

    Toshiharu YAMAKURA  Hiroyushi YAMADA  Yoshio YAMAGUCHI  

     
    PAPER

      Vol:
    E79-B No:12
      Page(s):
    1827-1832

    Recently , a short range millimeter wave or a microwave sensing system has been extensively studied to estimate a target position or a source location. It can be applied to indoor propagation analysis, carborne applications, etc. The application of the superresolution technique has been proposed to obtain a high resolution performance in the time domain or the spatial domain. However, the availability of the polarization synthesis in the receiving antennas has not been considered. In this paper, we use a pair of polarized swept frequency data and propose two modifications of the MUSIC algorithm to enhance the resolution of time delay. One modification is the correlation matrix formulation which relates to the total signal power, and the other is a polarization filtering applied to the correlation matrix. These modifications have advantages such that. 1)Reduction of the estimation problem to the delay time estimation only; 2)Easy implementation. Experimental results are illustrated to show the availability of the methods, and to confirm the high resolution performance compared with the conventional method.

  • Physical Optics Analysis of Dipole-Wave Scattering from a Finite Strip Array on a Grounded Dielectric Slab

    Shuguang CHEN  Yoshio SATO  Masayuki OODO  Makoto ANDO  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1350-1357

    This paper verifies the accuracy of PO as applied to the scattering of dipole waves by a finite size reflector which is composed of strips on a grounded dielectric slab. By using the closed form expressions of reflected waves from the surface, PO calculation can be conducted straightforwardly. The calculated results are compared with the experimental ones for vertical and horizontal dipoles over a circular reflector.

  • A Floorplan Based Methodology for Data-Path Synthesis of Sub-Micron ASICs

    Vasily G. MOSHNYAGA  Keikichi TAMARU  

     
    PAPER-High-Level Synthesis

      Vol:
    E79-D No:10
      Page(s):
    1389-1395

    As IC fabrication technology enters a deepsubmicron region with device feature sizes <0.35µm, interconnect becomes the most dominant factor in design of high-speed Application Specific Integrated Circuits (ASICs). This paper proposes a novel methodology for automated data-path synthesis of such circuits and outlines algorithms to support it. In contrast to other approaches, we formulate interconnect area/delay optimizations as high-level synthesis transformations and use them during the synthesis to minimize the impact of wiring on circuit characteristics. Experiments with FIR filter implementations show that such formulation jointly with on the fly" module generation and performance-driven floorplanning provides more than a 30% reduction in wiring delay for deep sub-micron designs.

  • Proposal of the Fast Kernel MUSIC Algorithm

    Fumie TAGA  Hiroshi SHIMOTAHIRA  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1232-1239

    It is an important problem in fields of radar, sonar, and so on to estimate parameters of closely spaced multiple signals. The MUSIC algorithm with the forward-backward (FB) spatial smoothing is considered as the most effective technique at present for the problem with coherent signals in a variety of fields. We have applied this in Laser Microvision. Recently, Shimotahira has proposed the Kernel MUSIC algorithm, which is applicable to cases when signal vectors and noise vectors are orthogonal. It also utilizes Gaussian elimination of the covariance matrix instead of eigenvalue analysis to estimate noise vectors. Although the amount of computation by the Kernel MUSIC algorithm became lighter than that of the conventional MUSIC algorithm, the covariance matrix was formed to estimate noise vectors and also all noise vectors were used to analyze the MUSIC eigenspectrum. The heaviest amount of computation in the Kernel MUSIC algorithm exists in the transformation of the covariance matrix and the analysis of the MUSIC eigenspectrum. We propose a more straightforward algorithm to estimate noise vectors without forming a covariance matrix, easier algorithm to analyze the MUSIC eigenspectrum. The superior characteristics will be demonstrated by results of numerical simulation.

  • Equivalence of Physical Optics and Aperture Field Integration Method in the Full Pattern Analysis of Reflector Antennas

    Masayuki OODO  Makoto ANDO  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E79-C No:8
      Page(s):
    1152-1159

    Physical optics(PO) and the aperture field integration method (AFIM) give accurate and similar field patterns near the first few sidelobes of reflector antennas. It is widely accepted that the use of AFIM is restricted to norrower angles than PO. In this paper, uniform equivalent edge currents of PO and AFIM are compared analytically and their equivalence in high frequency in discussed. It is asymptotically verified that the patterns by AFIM are almost identical to PO fields in the full 360angular region, provided that AFIM uses the equivalent surface currents consisting of two components, that is, the geometrical optics(GO) reflected fields from the reflector and the incident fields from the feed source, the latter of which are often neglected. Slightly weaker equivalence is predicted for cross polarization patterns. Numerical comparison of PO and AFIM confirms all these results, the equivalence holds not only for large but also for a very small refiector of the order of one wavelength diameter.

  • On the Kernel MUSIC Algorithm with a Non-Redundant Spatial Smoothing Technique

    Hiroshi SHIMOTAHIRA  Fumie TAGA  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1225-1231

    We propose the Kernel MUSIC algorithm as an improvement over the conventional MUSIC algorithm. This algorithm is based on the orthogonality between the image and kernel space of an Hermitian mapping constructed from the received data. Spatial smoothing, needed to apply the MUSIC algorithm to coherent signals, is interpreted as constructing procedure of the Hermitian mapping into the subspace spanned by the constituent vectors of the received data. We also propose a new spatial smoothing technique which can remove the redundancy included in the image space of the mapping and discuss that the removal of redundancy is essential for improvement of resolution. By computer simulation, we show advantages of the Kernel MUSIC algorithm over the conventional one, that is, the reduction of processing time and improvement of resolution. Finally, we apply the Kernel MUSIC algorithm to the Laser Microvision, an optical misroscope we are developing, and verify that this algorithm has about two times higher resolution than that of the Fourier transform method.

  • A Time-Domain Filtering Scheme for the Modified Root-MUSIC Algorithm

    Hiroyoshi YAMADA  Yoshio YAMAGUCHI  Masakazu SENGOKU  

     
    PAPER-Antennas and Propagation

      Vol:
    E79-B No:4
      Page(s):
    595-601

    A new superresolution technique is proposed for high-resolution estimation of the scattering analysis. For complicated multipath propagation environment, it is not enough to estimate only the delay-times of the signals. Some other information should be required to identify the signal path. The proposed method can estimate the frequency characteristic of each signal in addition to its delay-time. One method called modified (Root) MUSIC algorithm is known as a technique that can treat both of the parameters (frequency characteristic and delay-time). However, the method is based on some approximations in the signal decorrelation, that sometimes make problems. Therefore, further modification should be needed to apply the method to the complicated scattering analysis. In this paper, we propose to apply a time-domain null filtering scheme to reduce some of the dominant signal components. It can be shown by a simple experiment that the new technique can enhance estimation accuracy of the frequency characteristic in the Root-MUSIC algorithm.

  • Construction of Voronoi Diagram on the Upper Half-Plane

    Kensuke ONISHI  Nobuki TAKAYAMA  

     
    PAPER

      Vol:
    E79-A No:4
      Page(s):
    533-539

    The Voronoi diagram is the most fundamental and useful concept in computational geometry. To understand impacts of non-Euclidean geometry on computational geometry, this paper investigates the Voronoi diagram in hyperbolic space. We first present characterizations of this diagram by means of the Enclidean Voronoi diagram, and based on them propose efficient algorithms to construct it. Some applications are also mentioned.

  • Single Chip Implementation of MPEG2 Decoder for HDTV Level Pictures

    Takao ONOYE  Toshihiro MASAKI  Yasuo MORIMOTO  Yoh SATO  Isao SHIRAKAWA  Kenji MATSUMURA  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    330-338

    A single chip MPEG2 MP@HL Video decoder has been developed, which consists mainly of specific functional units and macroblock level pipeline buffers. A new organization is also devised for a set of off-chip frame memories and the interfaces associated with it. Owing to sophisticated I/O interfaces among functional units, the macroblock level pipeline in conjunction with different decording facilities attains a high throughput to such an extent as to decode HDTV images in real time. Moreover, a set of these functional units, pipeline buffers, and frame memory interfaces, together with a sequence controller, is integrated for the first time in a single chip, which has the total area of 8.8 9.2mm2 with a 0.6µm triple-mental CMOS technology, and dissipates 1.2 W from a single 3.3 V supply.

  • A Novel Spatial Smoothing Technique for the MUSIC Algorithm

    Fumie TAGA  Hiroshi SHIMOTAHIRA  

     
    LETTER

      Vol:
    E78-B No:11
      Page(s):
    1513-1517

    The MUSIC algorithm has proven to be an effective means of estimating parameters of multiple incoherent signals. Furthermore, the forward-backward (FB) spatial smoothing technique has been considered the best preprocessing method to decorrelate coherent signals. In this paper, we propose a novel preprocessing technique based upon ideas associated with the FB and adaptive spatial smoothing techniques and report on its superiority in numerical simulations.

  • High-Resolution Techniques in Signal Processing Antennas

    Yasutaka OGAWA  Nobuyoshi KIKUMA  

     
    INVITED PAPER

      Vol:
    E78-B No:11
      Page(s):
    1435-1442

    Signal processing antennas have been studied not only for interference suppression but also for high-resolution estimation of radio environment such as directions-of-arrival of incident signals. These two applications are based on the common technique, that is, null steering. This tutorial paper reviews the MUSIC algorithm which is one of the typical high-resolution techniques. Examining the eigenvector beam patterns, we demonstrate that the high-resolution capability is realized by steering nulls. The considerations will be useful for understanding the high-resolution techniques in the signal processing antennas. We then describe a modified version of MUSIC (Root MUSIC). We show the performance and robustness of the method. Furthermore, we introduce radar target identification and two-dimensional radar target imaging. These study fields are new applications of the signal processing antennas, to which a great deal of attention has been devoted recently.

  • An ASIC Implementation Scheme to Realize a Beam Space CMA Adaptive Array Antenna

    Toyohisa TANAKA  Ryu MIURA  Isamu CHIBA  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E78-B No:11
      Page(s):
    1467-1473

    We demonstrate a feasibility of a Beam Space CMA (Constant Modulus Algorithm) Adaptive array antenna by implementing a Digital Signal Processor (DSP) in ASICs using field programmable gate arrays (FPGA). The DSP can synthesize 16 multibeams and eliminate interference signals by CMA adaptive processing. The whole function was implemented in about 127,000 equivalent gates. Simple experimental results in a radio anechoic chamber have confirmed the basic function of BSCMA adaptive array antenna.

  • High-Resolution Analysis of Indoor Multipath Propagation Structure

    Yasutaka OGAWA  Norihiro HAMAGUCHI  Kohzoh OHSHIMA  Kiyohiko ITOH  

     
    PAPER

      Vol:
    E78-B No:11
      Page(s):
    1450-1457

    Analyzing multipath propagation structure is important to develop anti-fading techniques for high-speed digital radio systems. Several techniques have been employed to measure delay profiles and/or arrival angles. This paper presents a simultaneous estimation method of delay times and arrival angles of indoor multipath waves. We obtain frequency-domain data at different receiving antenna positions using a network analyzer. We estimate the propagation parameters by means of a two-dimensional MUSIC algorithm. In order to obtain reliable results, a two-dimensional discrete inverse Fourier transform and a gating technique are employed before the MUSIC algorithm. Simulation and experimental results show that the proposed method can estimate the propagation parameters properly.

  • Data Model and Architecture of Multimedia Database for Engineering Applications

    Hiroshi ARISAWA  Takashi TOMII  Hitoshi YUI  Hidehiko ISHIKAWA  

     
    PAPER-Advanced Applications

      Vol:
    E78-D No:11
      Page(s):
    1362-1368

    This papaer presents a data model and the database system architecture to handle multimedia data, especially video (or image sequence) data. A new scheme AIS diagram" is introduced, by which all informations about entities and relationships among bitmap frames or textual informations are described in a uniform way. We focus on the integration of engineering data. The most important problem to be solved is how to capture the objects" in each frame and to represent them in the data model. For this purpose we propose physical cut" and logical cut" as a unit of information in image sequences and, using those concepts, we developed a prototype system for multimedia data processing on a conventional database system.

  • A Portable Communication Terminal for Novices and Its User Interface Software

    Kiyoshi KATO  Hitoshi MIYAI  

     
    PAPER

      Vol:
    E78-B No:10
      Page(s):
    1387-1394

    Portable terminals have the potential of providing information and communication services not only to computer experts at their offices but also to many users being in a variety of daily life situations. The current user interfaces (UIs) of portable terminals are not suitable for a novice user of computers; they require some knowledge on computers from a user. To overcome this problem, the authors tried to implement their knowledge on the daily life in the design of a UI for novice users. As a result, two UI mechanisms, called Novice Interface and Graphical Metaphor Interface, which provide operations, expressions, and data structures in a way similar to those usually used in daily life are proposed. Novice Interface is to provide easy to use environment. It adopts a direct manipulation device with three buttons and a model of data structures, called Small World Model, that limits the number of functions and the depth of hierarchical menu. Graphical Metaphor Interface, being an extension of Novice Interface, is to provide services with a display screen that makes them well-understandable for any user. The proposed UI mechanisms were implemented in a prototype terminal and its software platform. The former offers several applications of the information services (like teleshopping, home banking, or database retrieval) and the communication services (like pen-based image mail, software fax, or telewriting); the latter enables those application programs to provide a consistent UI.

  • Conceptual Graph Programs and Their Declarative Semantics

    Bikash Chandra GHOSH  Vilas WUWONGSE  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E78-D No:9
      Page(s):
    1208-1217

    Conceptual graph formalism is a knowledge representation language in AI based on a graphical form of logic. Although logic is the basis of the conceptual graph theory, there is a strongly felt absence of a formal treatment of conceptual graphs as a logic programming language. In this paper, we develop the notion of a conceptual graph program as a kind of graph-based order-sorted logic program. First, we define the syntax of the conceptual graph program by specifying its major syntactic elements. Then, we develop a kind of model theoretic semantics and fixpoint semantics of the conceptual graph program. Finally, we show that the two types of semantics coincide for the conceptual graph programs.

  • Design of the Basic Cell and Metallized RAM for 0.5 µm CMOS Gate Array

    Yoji NISHIO  Hideo HARA  Masahiro IWAMURA  Yasuo KAMINAGA  Katsunori KOIKE  Kosaku HIROSE  Takayuki NOTO  Satoshi OGUCHI  Yoshihiko YAMAMOTO  Takeshi ONO  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:9
      Page(s):
    1255-1262

    A 0.5 µm CMOS embedded function type gate array family with high speed modules was developed. This family has: an effective basic cell; high speed, compiled type metallized and diffused RAMs; PLL (Phase Locked Loop); and GTL (Gunning Transceiver Logic) to realize operation of over 100 MHz at 3.3 V. This paper describes the basic cell architecture and the compiled type metallized RAM. A divided MOS transistor type basic cell is effective for metallized modules such as metallized RAM and internal logic circuits. The appropriate basic cell size (height) can be decided from the viewpoints of the relationship between the number of usable basic cells and the basic cell height, and the logic circuit speed. Propagation delay time of the 2-input NAND is 200 ps at a standard load of fan out=2 and metal length=1.4 mm. For the universal ASIC, the compiled RAM is indispensable. Single port and multi-port metallized RAMs which are structured by using the basic cells are discussed. The new single port memory cell circuit which has a differential write and single end read operating method is introduced. This memory cell circuit can be realized using one basic cell. The diffused layer region of the NMOS transfer gates for the read operation is shared between neighbor memory cells. So, the capacitance of the bit line becomes smaller, and a high speed access time can be achieved. The measured access time of 1 kbits is 4.2 ns. The new multi-port memory cell circuits which have a single end write and single end read operating method are introduced. The read operating method is the same as that of the single port memory cell circuit. The access time shows very high speed operation comparable to that of the single port memory. This 3F (Flexible, Fast, and Friendly) ASIC family can be applied to high speed processors in workstations and graphics equipment.

421-440hit(469hit)