The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPE(2504hit)

861-880hit(2504hit)

  • Potential Game Approach for Spectrum Sharing in Distributed Cognitive Radio Networks

    I Wayan MUSTIKA  Koji YAMAMOTO  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3284-3292

    In a spectrum sharing system, lower-priority users are allowed to spatially reuse the spectrum allocated to higher-priority users as long as they do not disrupt communications of the latter. Therefore, to improve spectrum utilization, an important requirement for the former users is to manage the interference and ensure that the latter users can maintain reliable communications. In the present paper, a game theoretic framework of joint channel selection and power allocation for spectrum sharing in distributed cognitive radio networks is proposed. First, a utility function that captures the cooperative behavior to manage the interference and the satisfaction level to improve the throughput of the lower-priority users is defined. Next, based on the defined utility function, the proposed framework can be formulated as a potential game; thus, it is guaranteed to converge to a Nash equilibrium when the best response dynamic is performed. Simulation results show the convergence of the proposed potential game and reveal that performance improvements in terms of network throughput of the lower-priority users and outage probability of the higher-priority users can be achieved by the introduction of an adaptive coefficient adjustment scheme in the proposed utility function at the expense of the convergence to the Nash equilibrium.

  • Spectrum Handoff for Cognitive Radio Systems Based on Prediction Considering Cross-Layer Optimization

    Xiaoyu QIAO  Zhenhui TAN  Bo AI  Jiaying SONG  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3274-3283

    The spectrum handoff problem for cognitive radio systems is considered in this paper. The secondary users (SUs) can only opportunistically access the spectrum holes, i.e. the frequency channels unoccupied by the primary users (PUs). As long as a PU appears, SUs have to vacate the channel to avoid interference to PUs and switch to another available channel. In this paper, a prediction-based spectrum handoff scheme is proposed to reduce the negative effect (both the interference to PUs and the service block of SUs) during the switching time. In the proposed scheme, a hidden Markov model is used to predict the occupancy of a frequency channel. By estimating the state of the model in the next time instant, we can predict whether the frequency channel will be occupied by PUs or not. As a cross-layer design, the spectrum sensing performance parameters false alarm probability and missing detection probability are taken into account to enhance accuracy of the channel occupancy prediction. The proposed scheme will react on the spectrum sensing algorithm parameters while the spectrum handoff performance is significantly affected by them. The interference to the PUs could be reduced obviously by adapting the proposed spectrum handoff scheme, associated with a potential increase of switch delay of SUs. It will also be helpful for SUs to save broadband scan time and prefer an appropriate objective channel so as to avoid service block. Numerical results demonstrate the above performance improvement by using this prediction-based scheme.

  • Parallel DFA Architecture for Ultra High Throughput DFA-Based Pattern Matching

    Yi TANG  Junchen JIANG  Xiaofei WANG  Chengchen HU  Bin LIU  Zhijia CHEN  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3232-3242

    Multi-pattern matching is a key technique for implementing network security applications such as Network Intrusion Detection/Protection Systems (NIDS/NIPSes) where every packet is inspected against tens of thousands of predefined attack signatures written in regular expressions (regexes). To this end, Deterministic Finite Automaton (DFA) is widely used for multi-regex matching, but existing DFA-based researches have claimed high throughput at an expense of extremely high memory cost, so fail to be employed in devices such as high-speed routers and embedded systems where the available memory is quite limited. In this paper, we propose a parallel architecture of DFA called Parallel DFA (PDFA) taking advantage of the large amount of concurrent flows to increase the throughput with nearly no extra memory cost. The basic idea is to selectively store the underlying DFA in memory modules that can be accessed in parallel. To explore its potential parallelism we intensively study DFA-split schemes from both state and transition points in this paper. The performance of our approach in both the average cases and the worst cases is analyzed, optimized and evaluated by numerical results. The evaluation shows that we obtain an average speedup of 100 times compared with traditional DFA-based matching approach.

  • Estimation of Speech Intelligibility Using Speech Recognition Systems

    Yusuke TAKANO  Kazuhiro KONDO  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:12
      Page(s):
    3368-3376

    We attempted to estimate subjective scores of the Japanese Diagnostic Rhyme Test (DRT), a two-to-one forced selection speech intelligibility test. We used automatic speech recognizers with language models that force one of the words in the word-pair, mimicking the human recognition process of the DRT. Initial testing was done using speaker-independent models, and they showed significantly lower scores than subjective scores. The acoustic models were then adapted to each of the speakers in the corpus, and then adapted to noise at a specified SNR. Three different types of noise were tested: white noise, multi-talker (babble) noise, and pseudo-speech noise. The match between subjective and estimated scores improved significantly with noise-adapted models compared to speaker-independent models and the speaker-adapted models, when the adapted noise level and the tested level match. However, when SNR conditions do not match, the recognition scores degraded especially when tested SNR conditions were higher than the adapted noise level. Accordingly, we adapted the models to mixed levels of noise, i.e., multi-condition training. The adapted models now showed relatively high intelligibility matching subjective intelligibility performance over all levels of noise. The correlation between subjective and estimated intelligibility scores increased to 0.94 with multi-talker noise, 0.93 with white noise, and 0.89 with pseudo-speech noise, while the root mean square error (RMSE) reduced from more than 40 to 13.10, 13.05 and 16.06, respectively.

  • The Gaussian MIMO Broadcast Channel under Receive Power Protection Constraints Open Access

    Ian Dexter GARCIA  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3448-3460

    A Gaussian MIMO broadcast channel (GMBC) models the MIMO transmission of Gaussian signals from a transmitter to one or more receivers. Its capacity region and different precoding schemes for it have been well investigated, especially for the case wherein there are only transmit power constraints. In this paper, a special case of GMBC is investigated, wherein receive power constraints are also included. By imposing receive power constraints, the model, called protected GMBC (PGMBC), can be applied to certain scenarios in spatial spectrum sharing, secretive communications, mesh networks and base station cooperation. The sum capacity, capacity region, and application examples for the PGMBC are discussed in this paper. Sub-optimum precoding algorithms are also proposed for the PGMBC, where standard user precoding techniques are performed over a BC with a modified channel, which we refer to as the "protection-implied BC." In the protection-implied BC, the receiver protection constraints have been implied in the channel, which means that by satisfying the transmit power constraints on the protection implied channel, receiver protection constraints are guaranteed to be met. Any standard single-user or multi-user MIMO precoding scheme may then be performed on the protection-implied channel. When SINR-matching duality-based precoding is applied on the protection-implied channel, sum-capacity under full protection constraints (zero receive power), and near-sum-capacity under partial protection constraints (limited non-zero receive power) are achieved, and were verified by simulations.

  • A Method of Cognizing Primary and Secondary Radio Signals

    Satoshi TAKAHASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2682-2690

    A cognitive radio will have to sense and discover the spectral environments where it would not cause primary radios to interfere. Because the primary radios have the right to use the frequency, the cognitive radios as the secondary radios must detect radio signals before use. However, the secondary radios also need identifying the primary and other secondary radios where the primary radios are vulnerable to interference. In this paper, a method of simultaneously identifying signals of primary and secondary radios is proposed. The proposed bandwidth differentiation assumes the primary and secondary radios use orthogonal frequency division multiplexing (OFDM), and the secondary radios use at the lower number of subcarriers than the primary radios. The false alarm and detection probabilities are analytically evaluated using the characteristic function method. Numerical evaluations are also conducted on the assumption the primary radio is digital terrestrial television broadcasting. Result showed the proposed method could achieve the false alarm probability of 0.1 and the detection probability of 0.9 where the primary and secondary radio powers were 2.5 dB and 3.6 dB higher than the noise power. In the evaluation, the reception signals were averaged over the successive 32 snapshots, and the both the primary and secondary radios used QPSK. The power ratios were 4.7 dB and 8.4 dB where both the primary and secondary radios used 64QAM.

  • Analytical Study on Performance Improvement of Service Availability in Heterogeneous Radio Networks

    Kanshiro KASHIKI  Tadayuki FUKUHARA  Akira YAMAGUCHI  Toshinori SUZUKI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3302-3310

    From the viewpoint of service availability, which is an important evaluation factor in communication quality, we analytically study the performance improvement of heterogeneous radio networks that cooperatively select one system from among multiple communication systems. It is supposed herein that the heterogeneous network selects one system with the larger throughput or with the smaller time delay. To this end, we firstly derive analytical methods using the probability density function of the performance characteristics of the communication systems consisting of the heterogeneous radio network. The analytical method described here is comparatively general and enables the handling of cases where complete cooperation can and cannot be achieved in the heterogeneous network. As for the performance characteristics, we conduct an experiment using the wireless LAN to establish the probability distribution models of the throughput and time delay in the communication system. Using the analytical method and the experimental model obtained, we calculate the performance improvement by cooperative operation in the heterogeneous network. The equational expression to obtain the theoretical performance improvement limit is also investigated through the analytical equations.

  • Coexistence of Dynamic Spectrum Access Based Heterogeneous Networks

    Chen SUN  Yohannes D. ALEMSEGED  HaNguyen TRAN  Hiroshi HARADA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3293-3301

    This paper addresses the coexistence issue of distributed heterogeneous networks where the network nodes are cognitive radio terminals. These nodes, operating as secondary users (SUs), might interfere with primary users (PUs) who are licensed to use a given frequency band. Further, due to the lack of coordination and the dissimilarity of the radio access technologies (RATs) among these wireless nodes, they might interfere with each other. To solve this coexistence problem, we propose an architecture that enables coordination among the distributed nodes. The architecture provides coexistence solutions and sends reconfiguration commands to SU networks. As an example, time sharing is considered as a solution. Further, the time slot allocation ratios and transmit powers are parameters encapsulated in the reconfiguration commands. The performance of the proposed scheme is evaluated in terms of the coexistence between PUs and SUs, as well as the coexistence among SUs. The former addresses the interference from SUs to PUs, whereas the latter addresses the sharing of an identified spectrum opportunity among heterogeneous SU networks for achieving an efficient spectrum usage. In this study, we first introduce a new parameter named as quality of coexistence (QoC), which is defined as the ratio between the quality of SU transmissions and the negative interference to PUs. In this study we assume that the SUs have multiple antennas and employ fixed transmit power control (fixed-TPC). By using the approximation to the distribution of a weighted sum of chi-square random variables (RVs), we develop an analytical model for the time slot allocation among SU networks. Using this analytical model, we obtain the optimal time slot allocation ratios as well as transmit powers of the SU networks by maximizing the QoC. This leads to an efficient spectrum usage among SUs and a minimized negative influence to the PUs. Results show that in a particular scenario the QoC can be increased by 30%.

  • A Censor-Based Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Sensor Networks

    Thuc KIEU-XUAN  Insoo KOO  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3497-3500

    This letter proposes a novel censor-based scheme for cooperative spectrum sensing on Cognitive Radio Sensor Networks. A Takagi-Sugeno's fuzzy system is proposed to make the decision on the presence of the licensed user's signal based on the observed energy at each cognitive sensor node. The local spectrum sensing results are aggregated to make the final sensing decision at the fusion center after being censored to reduce transmission energy and reporting time. Simulation results show that significant improvement of the spectrum sensing accuracy, and saving energy as well as reporting time are achieved by our scheme.

  • An Efficient Ordered Sequential Cooperative Spectrum Sensing Scheme Based on Evidence Theory in Cognitive Radio

    Nhan NGUYEN-THANH  Insoo KOO  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3248-3257

    Spectrum sensing is a fundamental function for cognitive radio network to protect transmission of primary system. Cooperative spectrum sensing, which can help increasing sensing performance, is regarded as one of the most promising methods in realizing a reliable cognitive network. In such cooperation system, however the communication resources such as sensing time delay, control channel bandwidth and consumption energy for reporting the cognitive radio node's sensing results to the fusion center may become extremely huge when the number of cognitive users is large. In this paper, we propose an ordered sequential cooperative spectrum sensing scheme in which the local sensing data will be sent according to its reliability order to the fusion center. In proposed scheme, the sequential fusion process is sequentially conducted based on Dempster Shafer theory of evidence's combination of the reported sensing results. Above all, the proposed scheme is highly feasible due to the proposed two ordered sequential reporting methods. From simulation results, it is shown that the proposed technique not only keeps the same sensing performance of non-sequential fusion scheme but also extremely reduces the reporting resource requirements.

  • A Cross Layer Perceptual Speech Quality Based Wireless VoIP Service

    Tein-Yaw CHUNG  Yung-Mu CHEN  Liang-Yi HUANG  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2153-2162

    This paper proposes a cross layer wireless VoIP service which integrates an Adaptive QoS Playout (AQP) algorithm, E-model, Stream Control Transmission Protocol (SCTP), IEEE 802.21 Media Independent Handover (MIH) middleware and two user motion detection services. The proposed AQP algorithm integrates the effect of playout control and lost packet retransmission based on the E-model. Besides, by using the partial reliable transmission service from SCTP and the handoff notification from MIH services in a cross layer manner, AQP can reduce the lateness loss rate and improve speech quality under high frame error rates. In the simulations, the performance of AQP is compared with a fixed playout algorithm and four adaptive playout strategies. The simulation results show that the lateness loss rate of AQP is 2% lower than that of existing playout algorithms and the R-factor is 16% higher than the compared algorithms when a network has 50 ms wired propagation delay and 2.5% frame error rate.

  • Fast Traffic Classification Using Joint Distribution of Packet Size and Estimated Protocol Processing Time

    Rentao GU  Hongxiang WANG  Yongmei SUN  Yuefeng JI  

     
    PAPER

      Vol:
    E93-D No:11
      Page(s):
    2944-2952

    A novel approach for fast traffic classification for the high speed networks is proposed, which bases on the protocol behavior statistical features. The packet size and a new parameter named "Estimated Protocol Processing Time" are collected from the real data flows. Then a set of joint probability distributions is obtained to describe the protocol behaviors and classify the traffic. Comparing the parameters of an unknown flow with the pre-obtained joint distributions, we can judge which application protocol the unknown flow belongs to. Distinct from other methods based on traditional inter-arrival time, we use the "Estimated Protocol Processing Time" to reduce the location dependence and time dependence and obtain better results than traditional traffic classification method. Since there is no need for character string searching and parallel feature for hardware implementation with pipeline-mode data processing, the proposed approach can be easily deployed in the hardware for real-time classification in the high speed networks.

  • Spectrophotometer Calibration by a Double Integrating Sphere Reference Light Source and Display Panel Measurement Using Dark Sphere Open Access

    Tatsuhiko MATSUMOTO  Shigeo KUBOTA  Tsutomu SHIMURA  Shuichi HAGA  Takehiro NAKATSUE  Junichi OHSAKO  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1590-1594

    We succeeded to develop a reference light source in the range of very low luminance using a double integrating sphere system, and calibrated a commercial spectrophotometer below 110-5 cd/m2 levels, which is 1/100 lower than the specified limit for measurement. And we improved measurements in the ultra low luminance range of displays using the calibrated commercial spectrophotometer and a dark sphere to suppress the influence of the surround.

  • A New Unified Method for Fixed-Length Source Coding Problems of General Sources

    Tomohiko UYEMATSU  

     
    PAPER-Source Coding

      Vol:
    E93-A No:11
      Page(s):
    1868-1877

    This paper establishes a new unified method for fixed-length source coding problems of general sources. Specifically, we introduce an alternative definition of the smooth Renyi entropy of order zero, and show a unified approach to present the fixed-length coding rate in terms of this information quantity. Our definition of the smooth Renyi entropy has a clear operational meaning, and hence is easy to calculate for finite block lengths. Further, we represent various ε-source coding rate and the strong converse property for general sources in terms of the smooth Renyi entropy, and compare them with the results obtained by Han and Renner et al.

  • Performance of DS/SS System Using Pseudo-Ternary M-Sequences

    Ryo ENOMOTO  Hiromasa HABUCHI  Koichiro HASHIURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E93-A No:11
      Page(s):
    2299-2306

    In this paper, newly-found properties of the pseudo-ternary maximum-length shift register sequences (pseudo-ternary M-sequences) are described. In particular, the balance properties, the run-length distribution, the cross-correlation properties, and the decimation relationships are shown. The pseudo-ternary M-sequence is obtained by subtracting the one-chip shifted version from the {+1,-1}-valued M-sequence. Moreover, in this paper, performances of the direct sequence spread spectrum (DS/SS) system using the pseudo-ternary M-sequence are analyzed. In the performance evaluation, tracking error performance (jitter) and bit error rate (BER) performance that takes the jitter into account in DS/SS system with a pseudo-ternary M-sequence non-coherent DLL are evaluated. Using the pseudo-ternary M-sequence instead of the conventional M-sequences can improve the tracking error performance about 2.8 [dB]. Moreover, BER of the DS/SS system using the pseudo-ternary M-sequence is superior about 0.8 [dB] to that using the {+1,-1}-valued M-sequence.

  • Error-Resilient 3-D Wavelet Video Coding with Duplicated Lowest Sub-Band Coefficients and Two-Step Error Concealment Method

    Sunmi KIM  Hirokazu TANAKA  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2173-2183

    In this paper, we propose a two-step error concealment algorithm based on an error resilient three-dimensional discrete wavelet transform (3-D DWT) video coding scheme. The proposed scheme consists of an error-resilient encoder duplicating the lowest sub-band bit-streams for dispersive grouped frames and an error concealment decoder. The error concealment method of this decoder is decomposed of two steps, the first step is replacement of erroneous coefficients in the lowest sub-band by the duplicated coefficients, and the second step is interpolation of the missing wavelet coefficients by minimum mean square error (MMSE) estimation. The proposed scheme can achieve robust transmission over unreliable channels. Experimental results provide performance comparisons in terms of peak signal-to-noise ratio (PSNR) and demonstrate increased performances compared to state-of-the-art error concealment schemes.

  • Opportunistic Spectrum Access in Unslotted Primary Networks

    Yutae LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:11
      Page(s):
    3141-3143

    We propose an opportunistic spectrum access scheme for unslotted secondary users exploiting spectrum opportunities in unslotted primary networks. An analytical model is developed to investigate the performance of the proposed scheme, and numerical results are presented to evaluate the performance in unslotted primary networks.

  • Small-Sized Shaped Beam Base Station Antenna with Superior Intersector Interference Reduction in High Speed Cellular Systems

    Masayuki NAKANO  Hiroyasu ISHIKAWA  Shinichi NOMOTO  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2586-2594

    This paper presents a newly developed small-sized shaped beam base station antenna in order to reduce inter-sector interference for next generation high speed wireless data communication systems. The developed antenna realizes polarization diversity as a single small-sized antenna without decreasing the 3 dB main beamwidth compared with the conventional antenna by applying a newly designed beam shaping method. Furthermore, side sub-reflectors are newly installed in the radome to reduce the antenna beam gain in the direction toward the edge region neighboring the other sectors of the horizontal antenna pattern. By adopting this type of reflector, the diameter of the radome can be minimized at 0.65 λ, which is slightly longer than that of the conventional antenna. Both a computer simulation and a field measurement test based on an actual cellular network were conducted for the purpose of clarifying the validity of the shaped beam antenna. In the results, the CINR at the service area by the shaped beam antenna was 1 dB and 3.5 dB better than that of the conventional antenna at the median and 10% of CDF, respectively. The developed antenna will be expected to contribute to the enhancement of the quality of cellular radio systems in the future.

  • Training Sequence Aided MC-CDMA Scheme with High Spectrum Efficiency

    Linglong DAI  Zhaocheng WANG  Jian SONG  Zhixing YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E93-A No:10
      Page(s):
    1857-1860

    This letter presents a novel multi-carrier code division multiple access (MC-CDMA) system called time domain synchronous MC-CDMA (TDS-MC-CDMA). Aided by the new training sequence (TS) with perfect autocorrelation in the time domain and flat frequency response in the frequency domain, the proposed TDS-MC-CDMA system outperform the traditional MC-CDMA system in terms of spectrum efficiency by about 10%. Simulations are carried out to demonstrate the good performance of the proposed scheme.

  • A Hybrid Speech Emotion Recognition System Based on Spectral and Prosodic Features

    Yu ZHOU  Junfeng LI  Yanqing SUN  Jianping ZHANG  Yonghong YAN  Masato AKAGI  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:10
      Page(s):
    2813-2821

    In this paper, we present a hybrid speech emotion recognition system exploiting both spectral and prosodic features in speech. For capturing the emotional information in the spectral domain, we propose a new spectral feature extraction method by applying a novel non-uniform subband processing, instead of the mel-frequency subbands used in Mel-Frequency Cepstral Coefficients (MFCC). For prosodic features, a set of features that are closely correlated with speech emotional states are selected. In the proposed hybrid emotion recognition system, due to the inherently different characteristics of these two kinds of features (e.g., data size), the newly extracted spectral features are modeled by Gaussian Mixture Model (GMM) and the selected prosodic features are modeled by Support Vector Machine (SVM). The final result of the proposed emotion recognition system is obtained by combining the results from these two subsystems. Experimental results show that (1) the proposed non-uniform spectral features are more effective than the traditional MFCC features for emotion recognition; (2) the proposed hybrid emotion recognition system using both spectral and prosodic features yields the relative recognition error reduction rate of 17.0% over the traditional recognition systems using only the spectral features, and 62.3% over those using only the prosodic features.

861-880hit(2504hit)