The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

221-240hit(1274hit)

  • Fast Spectral BRDF & BTDF Measurements for Characterization of Displays and Components Open Access

    Pierre BOHER  Thierry LEROUX  Véronique COLLOMB-PATTON  Thibault BIGNON  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1255-1263

    In the present paper we show how to obtain rapidly the spectral BRDF and BTDF of different display components or transparent displays using Fourier optics system under different illumination configurations. Results can be used to simulate the entire structure of a LCD display or to predict transparent display performances under various illuminations.

  • Development of Zinc Oxide Spatial Light Modulator for High-Yield Speckle Modulation Open Access

    Naoya TATE  Tadashi KAWAZOE  Shunsuke NAKASHIMA  Wataru NOMURA  Motoichi OHTSU  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1264-1270

    In order to realize high-yield speckle modulation, we developed a novel spatial light modulator using zinc oxide single crystal doped with nitrogen ions. The distribution of dopants was optimized to induce characteristic optical functions by applying an annealing method developed by us. The device is driven by a current in the in-plane direction, which induces magnetic fields. These fields strongly interact with the doped material, and the spatial distribution of the refractive index is correspondingly modulated via external control. Using this device, we experimentally demonstrated speckle modulation, and we discuss the quantitative superiority of our approach.

  • Combining Fisher Criterion and Deep Learning for Patterned Fabric Defect Inspection

    Yundong LI  Jiyue ZHANG  Yubing LIN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/08/08
      Vol:
    E99-D No:11
      Page(s):
    2840-2842

    In this letter, we propose a novel discriminative representation for patterned fabric defect inspection when only limited negative samples are available. Fisher criterion is introduced into the loss function of deep learning, which can guide the learning direction of deep networks and make the extracted features more discriminating. A deep neural network constructed from the encoder part of trained autoencoders is utilized to classify each pixel in the images into defective or defectless categories, using as context a patch centered on the pixel. Sequentially the confidence map is processed by median filtering and binary thresholding, and then the defect areas are located. Experimental results demonstrate that our method achieves state-of-the-art performance on the benchmark fabric images.

  • Harmonic-Based Robust Voice Activity Detection for Enhanced Low SNR Noisy Speech Recognition System

    Po-Yi SHIH  Po-Chuan LIN  Jhing-Fa WANG  

     
    PAPER-Speech and Hearing

      Vol:
    E99-A No:11
      Page(s):
    1928-1936

    This paper describes a novel harmonic-based robust voice activity detection (H-RVAD) method with harmonic spectral local peak (HSLP) feature. HSLP is extracted by spectral amplitude analysis between the adjacent formants, and such characteristic can be used to identify and verify audio stream containing meaningful human speech accurately in low SNR environment. And, an enhanced low SNR noisy speech recognition system framework with wakeup module, speech recognition module and confirmation module is proposed. Users can determine or reject the system feedback while a recognition result was given in the framework, to prevent any chance that the voiced noise misleads the recognition result. The H-RVAD method is evaluated by the AURORA2 corpus in eight types of noise and three SNR levels and increased overall average performance from 4% to 20%. In home noise, the performance of H-RVAD method can be performed from 4% to 14% sentence recognition rate in average.

  • Statistical Bandwidth Extension for Speech Synthesis Based on Gaussian Mixture Model with Sub-Band Basis Spectrum Model

    Yamato OHTANI  Masatsune TAMURA  Masahiro MORITA  Masami AKAMINE  

     
    PAPER-Voice conversion

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2481-2489

    This paper describes a novel statistical bandwidth extension (BWE) technique based on a Gaussian mixture model (GMM) and a sub-band basis spectrum model (SBM), in which each dimensional component represents a specific acoustic space in the frequency domain. The proposed method can achieve the BWE from speech data with an arbitrary frequency bandwidth whereas the conventional methods perform the conversion from fixed narrow-band data. In the proposed method, we train a GMM with SBM parameters extracted from full-band spectra in advance. According to the bandwidth of input signal, the trained GMM is reconstructed to the GMM of the joint probability density between low-band SBM and high-band SBM components. Then high-band SBM components are estimated from low-band SBM components of the input signal based on the reconstructed GMM. Finally, BWE is achieved by adding the spectra decoded from estimated high-band SBM components to the ones of the input signal. To construct the full-band signal from the narrow-band one, we apply this method to log-amplitude spectra and aperiodic components. Objective and subjective evaluation results show that the proposed method extends the bandwidth of speech data robustly for the log-amplitude spectra. Experimental results also indicate that the aperiodic component extracted from the upsampled narrow-band signal realizes the same performance as the restored and the full-band aperiodic components in the proposed method.

  • Topics Arising from the WRC-15 with Respect to Satellite-Related Agenda Items Open Access

    Nobuyuki KAWAI  Satoshi IMATA  

     
    INVITED PAPER

      Vol:
    E99-B No:10
      Page(s):
    2113-2120

    Along with remarkable advancement of radiocommunication services including satellite services, the radio-frequency spectrum and geostationary-satellite orbit are getting congested. WRC-15 was held in November 2015 to study and implement efficient use of those natural resources. There were a number of satellite-related agenda items associated with frequency allocation, new usages of satellite communications and satellite regulatory issues. This paper overviews the outcome from these agenda items of WRC-15 as well as the agenda items for the next WRC (i.e. the WRC-19).

  • Simple Weighted Diversity Combining Technique for Cyclostationarity Detection Based Spectrum Sensing in Cognitive Radio Networks

    Daiki CHO  Shusuke NARIEDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/04/08
      Vol:
    E99-B No:10
      Page(s):
    2212-2220

    This paper presents a weighted diversity combining technique for the cyclostationarity detection based spectrum sensing of orthogonal frequency division multiplexing signals in cognitive radio. In cognitive radio systems, secondary users must detect the desired signal in an extremely low signal-to-noise ratio (SNR) environment. In such an environment, multiple antenna techniques (space diversity) such as maximum ratio combining are not effective because the energy of the target signal is also extremely weak, and it is difficult to synchronize some received signals. The cyclic autocorrelation function (CAF) is used for traditional cyclostationarity detection based spectrum sensing. In the presented technique, the CAFs of the received signals are combined, while the received signals themselves are combined with general space diversity techniques. In this paper, the value of the CAF at peak and non-peak cyclic frequencies are computed, and we attempt to improve the sensing performance by using different weights for each CAF value. The results were compared with those from conventional methods and showed that the presented technique can improve the spectrum sensing performance.

  • Spectral Features Based on Local Normalized Center Moments for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Xinran ZHANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:10
      Page(s):
    1863-1866

    To discuss whether rotational invariance is the main role in spectrogram features, new spectral features based on local normalized center moments, denoted by LNCMSF, are proposed. The proposed LNCMSF firstly adopts 2nd order normalized center moments to describe local energy distribution of the logarithmic energy spectrum, then normalized center moment spectrograms NC1 and NC2 are gained. Secondly, DCT (Discrete Cosine Transform) is used to eliminate the correlation of NC1 and NC2, then high order cepstral coefficients TNC1 and TNC2 are obtained. Finally, LNCMSF is generated by combining NC1, NC2, TNC1 and TNC2. The rotational invariance test experiment shows that the rotational invariance is not a necessary property in partial spectrogram features. The recognition experiment shows that the maximum UA (Unweighted Average of Class-Wise Recall Rate) of LNCMSF are improved by at least 10.7% and 1.2% respectively, compared to that of MFCC (Mel Frequency Cepstrum Coefficient) and HuWSF (Weighted Spectral Features Based on Local Hu Moments).

  • Analysis over Spectral Efficiency and Power Scaling in Massive MIMO Dual-Hop Systems with Multi-Pair Users

    Yi WANG  Baofeng JI  Yongming HUANG  Chunguo LI  Ying HU  Yewang QIAN  Luxi YANG  

     
    PAPER-Information Theory

      Vol:
    E99-A No:9
      Page(s):
    1665-1673

    This paper considers a massive multiple-input-multiple-output (MIMO) relaying system with multi-pair single-antenna users. The relay node adopts maximum-ratio combining/maximum-ratio transmission (MRC/MRT) stratagem for reception/transmission. We analyze the spectral efficiency (SE) and power scaling laws with respect to the number of relay antennas and other system parameters. First, by using the law of large numbers, we derive the closed-form expression of the SE, based on which, it is shown that the SE per user increases with the number of relay antennas but decreases with the number of user pairs, both logarithmically. It is further discovered that the transmit power at the source users and the relay can be continuously reduced as the number of relay antennas becomes large while the SE can maintains a constant value, which also means that the energy efficiency gain can be obtained simultaneously. Moreover, it is proved that the number of served user pairs can grow proportionally over the number of relay antennas with arbitrary SE requirement and no extra power cost. All the analytical results are verified through the numerical simulations.

  • Knowledge-Based Reestablishment of Primary Exclusive Region in Database-Driven Spectrum Sharing

    Shota YAMASHITA  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    2019-2027

    Technological developments in wireless communication have led to an increasing demand for radio frequencies. This has necessitated the practice of spectrum sharing to ensure optimal usage of the limited frequencies, provided this does not cause interference. This paper presents a framework for managing an unexpected situation in which a primary user experiences harmful interference with regard to database-driven secondary use of spectrum allocated to the primary user towards 5G mobile networks, where the primary user is assumed to be a radar system. In our proposed framework, the primary user informs a database that they are experiencing harmful interference. Receiving the information, the database updates a primary exclusive region in which secondary users are unable to operate in the licensed spectrum. Subsequent to the update, this primary exclusive region depends on the knowledge about the secondary users when the primary user experiences harmful interference, knowledge of which is stored in the database. We assume a circular primary exclusive region centered at a primary receiver and derive an optimal radius of the primary exclusive region by applying stochastic geometry. Then, for each type of knowledge stored in the database for the secondary user, we evaluate the optimal radius for a target probability that the primary user experiences harmful interference. The results show that the more detailed the knowledge of the secondary user's density and transmission power stored in the database, the smaller the radius that has to be determined for the primary exclusive region after the update and the more efficient the spatial reuse of the licensed spectrum that can be achieved.

  • Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes

    Taiki NAGASHIMA  Yudai TANAKA  Susumu ISHIHARA  

     
    PAPER

      Vol:
    E99-B No:9
      Page(s):
    1989-1997

    Deterioration of sewer pipes is one of very important problems in Japan. Sewer inspections have been carried out mainly by visual check or wired remote robots with a camera. However, such inspection schemes involve high labor and/or monetary cost. Sewer inspection with boat-type video cameras or unwired robots takes a long time to check the result of the inspection because video data are obtained after the equipment is retrieved from the pipe. To realize low cost, safe and quick inspection of sewer pipes, we have proposed a sewer inspection system using drifting wireless sensor nodes. Water, soil, and the narrow space in the pipe make the long-range and high throughput wireless radio communication difficult. Therefore, we have to identify suitable radio frequency and antenna configuration based on wireless communication characteristics in sewer pipes. If the frequency is higher, the Fresnel zone, the needed space for the line of sight is small, but the path loss in free space is large. On the other hand, if the frequency is lower, the size of the Fresnel zone is large, but the path loss in free space is small. We conducted wireless communication experiments using 920MHz, 2.4GHz, and 5GHz band off-the-shelf devices in an experimental underground pipe. The measurement results show that the wireless communication range of 5GHz (IEEE 802.11a) is over 8m in a 200mm-diameter pipe and is longer than 920MHz (ARIB STD-T108), 2.4GHz (IEEE 802.11g, IEEE 802.15.4) band at their maximum transmission power. In addition, we confirmed that devices that use IEEE 802.11a and 54Mbps bit rate can transmit about 43MB data while they are in the communication range of an AP and drift at 1m/s in a 200mm-diameter pipe, and it is bigger than one of devices that use other bit rate.

  • Vehicle Detection Using Local Size-Specific Classifiers

    SeungJong NOH  Moongu JEON  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/06/17
      Vol:
    E99-D No:9
      Page(s):
    2351-2359

    As the number of surveillance cameras keeps increasing, the demand for automated traffic-monitoring systems is growing. In this paper, we propose a practical vehicle detection method for such systems. In the last decade, vehicle detection mainly has been performed by employing an image scan strategy based on sliding windows whereby a pre-trained appearance model is applied to all image areas. In this approach, because the appearance models are built from vehicle sample images, the normalization of the scales and aspect ratios of samples can significantly influence the performance of vehicle detection. Thus, to successfully apply sliding window schemes to detection, it is crucial to select the normalization sizes very carefully in a wise manner. To address this, we present a novel vehicle detection technique. In contrast to conventional methods that determine the normalization sizes without considering given scene conditions, our technique first learns local region-specific size models based on scene-contextual clues, and then utilizes the obtained size models to normalize samples to construct more elaborate appearance models, namely local size-specific classifiers (LSCs). LSCs can provide advantages in terms of both accuracy and operational speed because they ignore unnecessary information on vehicles that are observable in faraway areas from each sliding window position. We conduct experiments on real highway traffic videos, and demonstrate that the proposed method achieves a 16% increased detection accuracy with at least 3 times faster operational speed compared with the state-of-the-art technique.

  • Multiple Multicast Transmission Exploiting Channel Simplification

    Changyong SHIN  Yong-Jai PARK  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:9
      Page(s):
    1745-1749

    In this letter, we present a spectrally efficient multicast method which enables a transmitter to simultaneously transmit multiple multicast streams without any interference among multicast groups. By using unique combiners at receivers with multiple antennas within each multicast group, the proposed method simplifies multiple channels between the transmitter and the receivers to an equivalent channel. In addition, we establish the sufficient condition for the system configuration which should be satisfied for the channel simplification and provide a combiner design technique for the receivers. To remove interference among multicast groups, the precoder for the transmitter is designed by utilizing the equivalent channels. By exploiting time resources efficiently, the channel simplification (CS) based method achieves a higher sum rate than the time division multiplexing (TDM) based method, which the existing multicast techniques fundamentally employ, at high signal-to-noise ratio (SNR) regime. Furthermore, we present a multicast method combining the CS based method with the TDM based method to utilize the benefits of both methods. Simulation results successfully demonstrate that the combined multicast method obtains a better sum rate performance at overall SNR regime.

  • Singular-Spectrum Analysis for Digital Audio Watermarking with Automatic Parameterization and Parameter Estimation Open Access

    Jessada KARNJANA  Masashi UNOKI  Pakinee AIMMANEE  Chai WUTIWIWATCHAI  

     
    PAPER-Information Network

      Pubricized:
    2016/05/16
      Vol:
    E99-D No:8
      Page(s):
    2109-2120

    This paper proposes a blind, inaudible, robust digital-audio watermarking scheme based on singular-spectrum analysis, which relates to watermarking techniques based on singular value decomposition. We decompose a host signal into its oscillatory components and modify amplitudes of some of those components with respect to a watermark bit and embedding rule. To improve the sound quality of a watermarked signal and still maintain robustness, differential evolution is introduced to find optimal parameters of the proposed scheme. Test results show that, although a trade-off between inaudibility and robustness still persists, the difference in sound quality between the original and the watermarked one is considerably smaller. This improved scheme is robust against many attacks, such as MP3 and MP4 compression, and band-pass filtering. However, there is a drawback, i.e., some music-dependent parameters need to be shared between embedding and extraction processes. To overcome this drawback, we propose a method for automatic parameter estimation. By incorporating the estimation method into the framework, those parameters need not to be shared, and the test results show that it can blindly decode watermark bits with an accuracy of 99.99%. This paper not only proposes a new technique and scheme but also discusses the singular value and its physical interpretation.

  • Spectral Features Based on Local Hu Moments of Gabor Spectrograms for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Cheng ZHA  Xinran ZHANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/05/06
      Vol:
    E99-D No:8
      Page(s):
    2186-2189

    To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.

  • Welch FFT Segment Size Selection Method for Spectrum Awareness System

    Hiroki IWATA  Kenta UMEBAYASHI  Samuli TIIRO  Janne J. LEHTOMÄKI  Miguel LÓPEZ-BENÍTEZ  Yasuo SUZUKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:8
      Page(s):
    1813-1823

    We create a practical method to set the segment size of the Welch FFT for wideband and long-term spectrum usage measurements in the context of hierarchical dynamic spectrum access (DSA). An energy detector (ED) based on the Welch FFT can be used to detect the presence or absence of primary user (PU) signal and to estimate the duty cycle (DC). In signal detection with the Welch FFT, segment size is an important design parameter since it determines both the detection performance and the frequency resolution. Between these two metrics, there is a trade-off relationship which can be controlled by adjusting the segment size. To cope with this trade-off relationship, we define an optimum and, more easy to analyze sub-optimum segment size design criterion. An analysis of the sub-optimum segment size criterion reveals that the resulting segment size depends on the signal-to-noise ratio (SNR) and the DC. Since in practice both SNR and DC are unknown, proper segment setting is difficult. To overcome this problem, we propose an adaptive segment size selection (ASSS) method that uses noise floor estimation outputs. The proposed method does not require any prior knowledge on the SNR or the DC. Simulation results confirm that the proposed ASSS method matches the performance achieved with the optimum design criterion.

  • BFWindow: Speculatively Checking Data Property Consistency against Buffer Overflow Attacks

    Jinli RAO  Zhangqing HE  Shu XU  Kui DAI  Xuecheng ZOU  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2002-2009

    Buffer overflow is one of the main approaches to get control of vulnerable programs. This paper presents a protection technique called BFWindow for performance and resource sensitive embedded systems. By coloring data structure in memory with single associate property bit to each byte and extending the target memory block to a BFWindow(2), it validates each memory write by speculatively checking consistency of data properties within the extended buffer window. Property bits are generated by compiler statically and checked by hardware at runtime. They are transparent to users. Experimental results show that the proposed mechanism is effective to prevent sequential memory writes from crossing buffer boundaries which is the common scenario of buffer overflow exploitations. The performance overhead for practical protection mode across embedded system benchmarks is under 1%.

  • Energy-Efficient Resource Allocation in Sensing-Based Spectrum Sharing for Cooperative Cognitive Radio Networks

    Wanming HAO  Shouyi YANG  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1763-1771

    Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.

  • Adaptive Single-Channel Speech Enhancement Method for a Push-To-Talk Enabled Wireless Communication Device

    Hyoung-Gook KIM  Jin Young KIM  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E99-B No:8
      Page(s):
    1745-1753

    In this paper, we propose a single-channel speech enhancement method for a push-to-talk enabled wireless communication device. The proposed method is based on adaptive weighted β-order spectral amplitude estimation under speech presence uncertainty and enhanced instantaneous phase estimation in order to achieve flexible and effective noise reduction while limiting the speech distortion due to different noise conditions. Experimental results confirm that the proposed method delivers higher voice quality and intelligibility than the reference methods in various noise environments.

  • PAC-k: A Parallel Aho-Corasick String Matching Approach on Graphic Processing Units Using Non-Overlapped Threads

    ThienLuan HO  Seung-Rohk OH  HyunJin KIM  

     
    PAPER-Network Management/Operation

      Vol:
    E99-B No:7
      Page(s):
    1523-1531

    A parallel Aho-Corasick (AC) approach, named PAC-k, is proposed for string matching in deep packet inspection (DPI). The proposed approach adopts graphic processing units (GPUs) to perform the string matching in parallel for high throughput. In parallel string matching, the boundary detection problem happens when a pattern is matched across chunks. The PAC-k approach solves the boundary detection problem because the number of characters to be scanned by a thread can reach the longest pattern length. An input string is divided into multiple sub-chunks with k characters. By adopting the new starting position in each sub-chunk for the failure transition, the required number of threads is reduced by a factor of k. Therefore, the overhead of terminating and reassigning threads is also decreased. In order to avoid the unnecessary overlapped scanning with multiple threads, a checking procedure is proposed that decides whether a new starting position is in the sub-chunk. In the experiments with target patterns from Snort and realistic input strings from DEFCON, throughputs are enhanced greatly compared to those of previous AC-based string matching approaches.

221-240hit(1274hit)