The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

101-120hit(1274hit)

  • A Spectral Clustering Based Filter-Level Pruning Method for Convolutional Neural Networks

    Lianqiang LI  Jie ZHU  Ming-Ting SUN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/17
      Vol:
    E102-D No:12
      Page(s):
    2624-2627

    Convolutional Neural Networks (CNNs) usually have millions or even billions of parameters, which make them hard to be deployed into mobile devices. In this work, we present a novel filter-level pruning method to alleviate this issue. More concretely, we first construct an undirected fully connected graph to represent a pre-trained CNN model. Then, we employ the spectral clustering algorithm to divide the graph into some subgraphs, which is equivalent to clustering the similar filters of the CNN into the same groups. After gaining the grouping relationships among the filters, we finally keep one filter for one group and retrain the pruned model. Compared with previous pruning methods that identify the redundant filters by heuristic ways, the proposed method can select the pruning candidates more reasonably and precisely. Experimental results also show that our proposed pruning method has significant improvements over the state-of-the-arts.

  • A Stackelberg Game-Theoretic Solution to Win-Win Situation: A Presale Mechanism in Spectrum Market

    Wei BAI  Yuli ZHANG  Meng WANG  Jin CHEN  Han JIANG  Zhan GAO  Donglin JIAO  

     
    LETTER-Information Network

      Pubricized:
    2019/08/28
      Vol:
    E102-D No:12
      Page(s):
    2607-2610

    This paper investigates the spectrum allocation problem. Under the current spectrum management mode, large amount of spectrum resource is wasted due to uncertainty of user's demand. To reduce the impact of uncertainty, a presale mechanism is designed based on spectrum pool. In this mechanism, the spectrum manager provides spectrum resource at a favorable price for presale aiming at sharing with user the risk caused by uncertainty of demand. Because of the hierarchical characteristic, we build a spectrum market Stackelberg game, in which the manager acts as leader and user as follower. Then proof of the uniqueness and optimality of Stackelberg Equilibrium is given. Simulation results show the presale mechanism can promote profits for both sides and reduce temporary scheduling.

  • Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED

    Richard Hsin-Hsyong YANG  Chia-Kun LEE  Shiunn-Jang CHERN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2091-2103

    Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.

  • Underwater Signal Analysis in the Modulation Spectrogram with Time-Frequency Reassignment Technique

    Hyunjin CHO  Wan Jin KIM  Wooyoung HONG  

     
    LETTER-Engineering Acoustics

      Vol:
    E102-A No:11
      Page(s):
    1542-1544

    Modulation spectrogram is effective for analyzing underwater signals which consist of tonal and modulated components. This method can analyze the acoustic and modulation frequency at the same time, but has the trade-off issue of time-frequency localization. This letter introduces a reassignment method for overcoming the localization issue in conventional spectrograms, and then presents an alignment scheme for implementing modulation spectrogram. Relevant experiments show improvement in acoustic frequency estimation perspective and an increment in analyzable modulation frequency range.

  • QSL: A Specification Language for E-Questionnaire, E-Testing, and E-Voting Systems

    Yuan ZHOU  Yuichi GOTO  Jingde CHENG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2159-2175

    Many kinds of questionnaires, testing, and voting are performed in some completely electronic ways to do questions and answers on the Internet as Web applications, i.e. e-questionnaire systems, e-testing systems, and e-voting systems. Because there is no unified communication tool among the stakeholders of e-questionnaire, e-testing, and e-voting systems, until now, all the e-questionnaire, e-testing, and e-voting systems are designed, developed, used, and maintained in various ad hoc ways. As a result, the stakeholders are difficult to communicate to implement the systems, because there is neither an exhaustive requirement list to have a grasp of the overall e-questionnaire, e-testing, and e-voting systems nor a standardized terminology for these systems to avoid ambiguity. A general-purpose specification language to provide a unified description way for specifying various e-questionnaire, e-testing, and e-voting systems can solve the problems such that the stakeholders can refer to and use the complete requirements and standardized terminology for better communications, and can easily and unambiguously specify all the requirements of systems and services of e-questionnaire, e-testing, and e-voting, even can implement the systems. In this paper, we propose the first specification language, named “QSL,” with a standardized, consistent, and exhaustive list of requirements for specifying various e-questionnaire, e-testing, and e-voting systems such that the specifications can be used as the precondition of automatically generating e-questionnaire, e-testing, and e-voting systems. The paper presents our design addressing that QSL can specify all the requirements of various e-questionnaire, e-testing, and e-voting systems in a structured way, evaluates its effectiveness, performs real applications using QSL in case of e-questionnaire, e-testing, and e-voting systems, and shows various QSL applications for providing convenient QSL services to stakeholders.

  • Personalized Food Image Classifier Considering Time-Dependent and Item-Dependent Food Distribution Open Access

    Qing YU  Masashi ANZAWA  Sosuke AMANO  Kiyoharu AIZAWA  

     
    PAPER

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:11
      Page(s):
    2120-2126

    Since the development of food diaries could enable people to develop healthy eating habits, food image recognition is in high demand to reduce the effort in food recording. Previous studies have worked on this challenging domain with datasets having fixed numbers of samples and classes. However, in the real-world setting, it is impossible to include all of the foods in the database because the number of classes of foods is large and increases continually. In addition to that, inter-class similarity and intra-class diversity also bring difficulties to the recognition. In this paper, we solve these problems by using deep convolutional neural network features to build a personalized classifier which incrementally learns the user's data and adapts to the user's eating habit. As a result, we achieved the state-of-the-art accuracy of food image recognition by the personalization of 300 food records per user.

  • Cross-Domain Deep Feature Combination for Bird Species Classification with Audio-Visual Data

    Naranchimeg BOLD  Chao ZHANG  Takuya AKASHI  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2019/06/27
      Vol:
    E102-D No:10
      Page(s):
    2033-2042

    In recent decade, many state-of-the-art algorithms on image classification as well as audio classification have achieved noticeable successes with the development of deep convolutional neural network (CNN). However, most of the works only exploit single type of training data. In this paper, we present a study on classifying bird species by exploiting the combination of both visual (images) and audio (sounds) data using CNN, which has been sparsely treated so far. Specifically, we propose CNN-based multimodal learning models in three types of fusion strategies (early, middle, late) to settle the issues of combining training data cross domains. The advantage of our proposed method lies on the fact that we can utilize CNN not only to extract features from image and audio data (spectrogram) but also to combine the features across modalities. In the experiment, we train and evaluate the network structure on a comprehensive CUB-200-2011 standard data set combing our originally collected audio data set with respect to the data species. We observe that a model which utilizes the combination of both data outperforms models trained with only an either type of data. We also show that transfer learning can significantly increase the classification performance.

  • Fast Hyperspectral Unmixing via Reweighted Sparse Regression Open Access

    Hongwei HAN  Ke GUO  Maozhi WANG  Tingbin ZHANG  Shuang ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/05/28
      Vol:
    E102-D No:9
      Page(s):
    1819-1832

    The sparse unmixing of hyperspectral data has attracted much attention in recent years because it does not need to estimate the number of endmembers nor consider the lack of pure pixels in a given hyperspectral scene. However, the high mutual coherence of spectral libraries strongly affects the practicality of sparse unmixing. The collaborative sparse unmixing via variable splitting and augmented Lagrangian (CLSUnSAL) algorithm is a classic sparse unmixing algorithm that performs better than other sparse unmixing methods. In this paper, we propose a CLSUnSAL-based hyperspectral unmixing method based on dictionary pruning and reweighted sparse regression. First, the algorithm identifies a subset of the original library elements using a dictionary pruning strategy. Second, we present a weighted sparse regression algorithm based on CLSUnSAL to further enhance the sparsity of endmember spectra in a given library. Third, we apply the weighted sparse regression algorithm on the pruned spectral library. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets. For simulated data cubes (DC1, DC2 and DC3), the number of the pruned spectral library elements is reduced by at least 94% and the runtime of the proposed algorithm is less than 10% of that of CLSUnSAL. For simulated DC4 and DC5, the runtime of the proposed algorithm is less than 15% of that of CLSUnSAL. For the real hyperspectral datasets, the pruned spectral library successfully reduces the original dictionary size by 76% and the runtime of the proposed algorithm is 11.21% of that of CLSUnSAL. These experimental results show that our proposed algorithm not only substantially improves the accuracy of unmixing solutions but is also much faster than some other state-of-the-art sparse unmixing algorithms.

  • Spectrum Sensing Using Phase Inversion Based on Space Diversity with Over Three Antennas

    Shusuke NARIEDA  Hiroshi NARUSE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:8
      Page(s):
    974-977

    This letter presents a computational complexity reduction technique for space diversity based spectrum sensing when the number of receive antennas is greater than three (NR≥3 where NR is the number of receive antenna). The received signals are combined with phase inversion so as to not attenuate the combined signal, and a statistic for signal detection is computed from the combined signal. Because the computation of only one statistic is required regardless of the number of receive antenna, the complexity can be reduced. Numerical examples and simple analysis verify the effectiveness of the presented technique.

  • Change Impact Analysis for Refinement-Based Formal Specification

    Shinnosuke SARUWATARI  Fuyuki ISHIKAWA  Tsutomu KOBAYASHI  Shinichi HONIDEN  

     
    PAPER

      Pubricized:
    2019/05/22
      Vol:
    E102-D No:8
      Page(s):
    1462-1477

    Refinement-based formal specification is a promising approach to the increasing complexity of software systems, as demonstrated in the formal method Event-B. It allows stepwise modeling and verifying of complex systems with multiple steps at different abstraction levels. However, making changes is more difficult, as caution is necessary to avoid breaking the consistency between the steps. Judging whether a change is valid or not is a non-trivial task, as the logical dependency relationships between the modeling elements (predicates) are implicit and complex. In this paper, we propose a method for analyzing the impact of the changes of Event-B. By attaching labels to modeling elements (predicates), the method helps engineers understand how a model is structured and what needs to be modified to accomplish a change.

  • Learning-Based, Distributed Spectrum Observation System for Dynamic Spectrum Sharing in the 5G Era and Beyond

    Masaki KITSUNEZUKA  Kenta TSUKAMOTO  Jun SAKAI  Taichi OHTSUJI  Kazuaki KUNIHIRO  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1526-1537

    Dynamic sharing of limited radio spectrum resources is expected to satisfy the increasing demand for spectrum resources in the upcoming 5th generation mobile communication system (5G) era and beyond. Distributed real-time spectrum sensing is a key enabler of dynamic spectrum sharing, but the costs incurred in observed-data transmission are a critical problem, especially when massive numbers of spectrum sensors are deployed. To cope with this issue, the proposed spectrum sensors learn the ambient radio environment in real-time and create a time-spectral model whose parameters are shared with servers operating in the edge-computing layer. This process makes it possible to significantly reduce the communication cost of the sensors because frequent data transmission is no longer needed while enabling the edge servers to keep up on the current status of the radio environment. On the basis of the created time-spectral model, sharable spectrum resources are dynamically harvested and allocated in terms of geospatial, temporal, and frequency-spectral domains when accepting an application for secondary-spectrum use. A web-based prototype spectrum management system has been implemented using ten servers and dozens of sensors. Measured results show that the proposed approach can reduce data traffic between the sensors and servers by 97%, achieving an average data rate of 10 kilobits per second (kbps). In addition, the basic operation flow of the prototype has been verified through a field experiment conducted at a manufacturing facility and a proof-of-concept experiment of dynamic-spectrum sharing using wireless local-area-network equipment.

  • Model Checking in the Presence of Schedulers Using a Domain-Specific Language for Scheduling Policies

    Nhat-Hoa TRAN  Yuki CHIBA  Toshiaki AOKI  

     
    PAPER-Software System

      Pubricized:
    2019/03/29
      Vol:
    E102-D No:7
      Page(s):
    1280-1295

    A concurrent system consists of multiple processes that are run simultaneously. The execution orders of these processes are defined by a scheduler. In model checking techniques, the scheduling policy is closely related to the search algorithm that explores all of the system states. To ensure the correctness of the system, the scheduling policy needs to be taken into account during the verification. Current approaches, which use fixed strategies, are only capable of limited kinds of policies and are difficult to extend to handle the variations of the schedulers. To address these problems, we propose a method using a domain-specific language (DSL) for the succinct specification of different scheduling policies. Necessary artifacts are automatically generated from the specification to analyze the behaviors of the system. We also propose a search algorithm for exploring the state space. Based on this method, we develop a tool to verify the system with the scheduler. Our experiments show that we could serve the variations of the schedulers easily and verify the systems accurately.

  • Low-Complexity Blind Spectrum Sensing in Alpha-Stable Distributed Noise Based on a Gaussian Function

    Jinjun LUO  Shilian WANG  Eryang ZHANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1334-1344

    Spectrum sensing is a fundamental requirement for cognitive radio, and it is a challenging problem in impulsive noise modeled by symmetric alpha-stable (SαS) distributions. The Gaussian kernelized energy detector (GKED) performs better than the conventional detectors in SαS distributed noise. However, it fails to detect the DC signal and has high computational complexity. To solve these problems, this paper proposes a more efficient and robust detector based on a Gaussian function (GF). The analytical expressions of the detection and false alarm probabilities are derived and the best parameter for the statistic is calculated. Theoretical analysis and simulation results show that the proposed GF detector has much lower computational complexity than the GKED method, and it can successfully detect the DC signal. In addition, the GF detector performs better than the conventional counterparts including the GKED detector in SαS distributed noise with different characteristic exponents. Finally, we discuss the reason why the GF detector outperforms the conventional counterparts.

  • Secure Point-to-Multipoint Communication Using the Spread Spectrum Assisted Orthogonal Frequency Diverse Array in Free Space

    Tao XIE  Jiang ZHU  Qian CHENG  Yifu GUAN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1188-1197

    Wireless communication security has been increasingly important nowadays. Directional modulation (DM) is seen as a promising wireless physical layer security technology. Traditional DM is a transmit-side technology that projects digitally modulated information signals in the desired directions (or at the desired locations) while simultaneously distorting the constellation formats of the same signals in other directions (or at all other locations). However, these directly exposed digitally modulated information signals are easily intercepted by eavesdroppers along the desired directions (or around the desired locations). A new DM scheme for secure point-to-multipoint communication based on the spread spectrum assisted orthogonal frequency diverse array (short for SS-OFDA-M-DM) is proposed in this paper. It can achieve point-to-multipoint secure communication for multiple cooperative receivers at different locations. In the proposed SS-OFDA-M-DM scheme, only cooperative users that use specific DM receivers with right spread spectrum parameters can retrieve right symbols. Eavesdroppers without knowledge of spread spectrum parameters cannot intercept useful signals directly at the desired locations. Moreover, they cannot receive normal symbols at other locations either even if the right spread spectrum parameters are known. Numerical simulation results verify the validity of our proposed scheme.

  • In situ Observation of Immobilization of Cytochrome c into Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    471-474

    Hydrophobic DNA (H-DNA) nano-film was formed as the surface modifier on a thin glass plate working as a slab optical waveguide (SOWF). Cytochrom c (cytc) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 30 minutes. From SOWG absorption spectral changes during automated solution exchange (SE) processes, it was found that about 28.1% of cytc molecules was immobilized in the H-DNA nano-film with keeping their reduction functionality by reducing reagent.

  • An Enhanced Affinity Graph for Image Segmentation

    Guodong SUN  Kai LIN  Junhao WANG  Yang ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1073-1080

    This paper proposes an enhanced affinity graph (EA-graph) for image segmentation. Firstly, the original image is over-segmented to obtain several sets of superpixels with different scales, and the color and texture features of the superpixels are extracted. Then, the similarity relationship between neighborhood superpixels is used to construct the local affinity graph. Meanwhile, the global affinity graph is obtained by sparse reconstruction among all superpixels. The local affinity graph and global affinity graph are superimposed to obtain an enhanced affinity graph for eliminating the influences of noise and isolated regions in the image. Finally, a bipartite graph is introduced to express the affiliation between pixels and superpixels, and segmentation is performed using a spectral clustering algorithm. Experimental results on the Berkeley segmentation database demonstrate that our method achieves significantly better performance compared to state-of-the-art algorithms.

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • Spectrum-Based Fault Localization Framework to Support Fault Understanding Open Access

    Yong WANG  Zhiqiu HUANG  Yong LI  RongCun WANG  Qiao YU  

     
    LETTER-Software Engineering

      Pubricized:
    2019/01/15
      Vol:
    E102-D No:4
      Page(s):
    863-866

    A spectrum-based fault localization technique (SBFL), which identifies fault location(s) in a buggy program by comparing the execution statistics of the program spectra of passed executions and failed executions, is a popular automatic debugging technique. However, the usefulness of SBFL is mainly affected by the following two factors: accuracy and fault understanding in reality. To solve this issue, we propose a SBFL framework to support fault understanding. In the framework, we firstly localize a suspicious fault module to start debugging and then generate a weighted fault propagation graph (WFPG) for the hypothesis fault module, which weights the suspiciousness for the nodes to further perform block-level fault localization. In order to evaluate the proposed framework, we conduct a controlled experiment to compare two different module-level SBFL approaches and validate the effectiveness of WFPG. According to our preliminary experiments, the results are promising.

  • Exploiting Self-Reserving Spectrum to Reduce Service Dropping Probability in Cognitive Radio Systems

    Ohyun JO  Juyeop KIM  Kyung-Seop SHIN  Gyung-Ho HWANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    697-701

    To improve the efficiency of spectrum utilization, cognitive radio systems attempt to use temporarily unoccupied spectrum which is referred to as a spectrum hole. To this end, QoS (Quality of Service) is one of the most important issues in practical cognitive radio systems. In this article, an efficient spectrum management scheme using self-reserving spectrum is proposed to support QoS for cognitive radio users. The self-reservation of a spectrum hole can minimize service dropping probability by using the statistical characteristics of spectrum bands while using optimum amount of resources. In addition, it realizes seamless service for users by eliminating spectrum entry procedure that includes spectrum sensing, spectrum request, and spectrum grant. Performance analysis and intensive system level simulations confirm the efficiency of the proposed algorithms.

  • Network Resonance Method: Estimating Network Structure from the Resonance of Oscillation Dynamics Open Access

    Satoshi FURUTANI  Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/18
      Vol:
    E102-B No:4
      Page(s):
    799-809

    Spectral graph theory, based on the adjacency matrix or the Laplacian matrix that represents the network topology and link weights, provides a useful approach for analyzing network structure. However, in large scale and complex social networks, since it is difficult to completely know the network topology and link weights, we cannot determine the components of these matrices directly. To solve this problem, we propose a method for indirectly determining the Laplacian matrix by estimating its eigenvalues and eigenvectors using the resonance of oscillation dynamics on networks.

101-120hit(1274hit)