The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPEC(1274hit)

161-180hit(1274hit)

  • Multicultural Facial Expression Recognition Based on Differences of Western-Caucasian and East-Asian Facial Expressions of Emotions

    Gibran BENITEZ-GARCIA  Tomoaki NAKAMURA  Masahide KANEKO  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1317-1324

    An increasing number of psychological studies have demonstrated that the six basic expressions of emotions are not culturally universal. However, automatic facial expression recognition (FER) systems disregard these findings and assume that facial expressions are universally expressed and recognized across different cultures. Therefore, this paper presents an analysis of Western-Caucasian and East-Asian facial expressions of emotions based on visual representations and cross-cultural FER. The visual analysis builds on the Eigenfaces method, and the cross-cultural FER combines appearance and geometric features by extracting Local Fourier Coefficients (LFC) and Facial Fourier Descriptors (FFD) respectively. Furthermore, two possible solutions for FER under multicultural environments are proposed. These are based on an early race detection, and independent models for culture-specific facial expressions found by the analysis evaluation. HSV color quantization combined with LFC and FFD compose the feature extraction for race detection, whereas culture-independent models of anger, disgust and fear are analyzed for the second solution. All tests were performed using Support Vector Machines (SVM) for classification and evaluated using five standard databases. Experimental results show that both solutions overcome the accuracy of FER systems under multicultural environments. However, the approach which individually considers the culture-specific facial expressions achieved the highest recognition rate.

  • Highly Efficient Adaptive Bandwidth Allocation Algorithm for WDM/OFDM-PON-Based Elastic Optical Access Networks

    Hiroyuki SAITO  Naoki MINATO  Hideaki TAMAI  Hironori SASAKI  

     
    PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    972-978

    Capital expenditure (CAPEX) reduction and efficient wavelength allocation are critical for the future access networks. Elastic lambda aggregation network (EλAN) based on WDM and OFDM technologies is expected to realize efficient wavelength allocation. In this paper, we propose adaptive bandwidth allocation (ABA) algorithm for EλAN under the conditions of crowded networks, in which modulation format, symbol rate and the number of sub-carriers are adaptively decided based on the distance of PON-section, QoS and bandwidth demand of each ONU. Network simulation results show that the proposed algorithm can effectively reduce the total bandwidth and achieve steady high spectrum efficiency and contribute to the further reduction of CAPEX of future optical access networks.

  • Improved MCAS Based Spectrum Sensing in Cognitive Radio

    Shusuke NARIEDA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    915-923

    This paper presents a computationally efficient cyclostationarity detection based spectrum sensing technique in cognitive radio. Traditionally, several cyclostationarity detection based spectrum sensing techniques with a low computational complexity have been presented, e.g., peak detector (PD), maximum cyclic autocorrelation selection (MCAS), and so on. PD can be affected by noise uncertainty because it requires a noise floor estimation, whereas MCAS does not require the estimation. Furthermore, the computational complexity of MCAS is greater than that of PD because MCAS must compute some statistics for signal detection instead of the estimation unnecessary whereas PD must compute only one statistic. In the presented MCAS based techniques, only one statistic must be computed. The presented technique obtains other necessary statistics from the procedure that computes the statistic. Therefore, the computational complexity of the presented is almost the same as that of PD, and it does not require the noise floor estimation for threshold. Numerical examples are shown to validate the effectiveness of the presented technique.

  • Clutter Rank Estimation for Diving Platform Radar

    Fengde JIA  Zishu HE  

     
    LETTER-Analog Signal Processing

      Vol:
    E101-A No:3
      Page(s):
    600-603

    A convenient formula for the estimation of the clutter rank of the diving platform radar is derived. Brennan's rule provides a general formula to estimate the clutter rank for the side looking radar with a linear array, which is normally called one-dimensional (1D) estimation problem. With the help of the clutter wavenumber spectrum, the traditional estimation of the clutter rank is extended to the diving scenario and the estimation problem is two-dimensional (2D). The proposed rule is verified by the numerical simulations.

  • Pose Estimation with Action Classification Using Global-and-Pose Features and Fine-Grained Action-Specific Pose Models

    Norimichi UKITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/12/08
      Vol:
    E101-D No:3
      Page(s):
    758-766

    This paper proposes an iterative scheme between human action classification and pose estimation in still images. Initial action classification is achieved only by global image features that consist of the responses of various object filters. The classification likelihood of each action weights human poses estimated by the pose models of multiple sub-action classes. Such fine-grained action-specific pose models allow us to robustly identify the pose of a target person under the assumption that similar poses are observed in each action. From the estimated pose, pose features are extracted and used with global image features for action re-classification. This iterative scheme can mutually improve action classification and pose estimation. Experimental results with a public dataset demonstrate the effectiveness of the proposed method both for action classification and pose estimation.

  • Optimization of MAC-Layer Sensing Based on Alternating Renewal Theory in Cognitive Radio Networks

    Zhiwei MAO  Xianmin WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    865-876

    Cognitive radio (CR) is considered as the most promising solution to the so-called spectrum scarcity problem, in which channel sensing is an important problem. In this paper, the problem of determining the period of medium access control (MAC)-layer channel sensing in cognitive radio networks (CRNs) is studied. In our study, the channel state is statistically modeled as a continuous-time alternating renewal process (ARP) alternating between the OFF and ON states for the primary user (PU)'s communication activity. Based on the statistical ARP model, we analyze the CRNs with different SU MAC protocols, taking into consideration the effects of practical issues of imperfect channel sensing and non-negligible channel sensing time. Based on the analysis results, a constrained optimization problem to find the optimal sensing period is formulated and the feasibility of this problem is studied for systems with different OFF/ON channel state length distributions. Numerical results are presented to show the performance of the proposed sensing period optimization scheme. The effects of practical system parameters, including channel sensing errors and channel sensing time, on the performance and the computational complexity of the proposed sensing period optimization scheme are also investigated.

  • A Low-Power Pulse-Shaped Duobinary ASK Modulator for IEEE 802.11ad Compliant 60GHz Transmitter in 65nm CMOS

    Bangan LIU  Yun WANG  Jian PANG  Haosheng ZHANG  Dongsheng YANG  Aravind Tharayil NARAYANAN  Dae Young LEE  Sung Tae CHOI  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:2
      Page(s):
    126-134

    An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.

  • A RGB-Guided Low-Rank Method for Compressive Hyperspectral Image Reconstruction

    Limin CHEN  Jing XU  Peter Xiaoping LIU  Hui YU  

     
    PAPER-Image

      Vol:
    E101-A No:2
      Page(s):
    481-487

    Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.

  • Accurate Estimation of Personalized Video Preference Using Multiple Users' Viewing Behavior

    Yoshiki ITO  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/11/22
      Vol:
    E101-D No:2
      Page(s):
    481-490

    A method for accurate estimation of personalized video preference using multiple users' viewing behavior is presented in this paper. The proposed method uses three kinds of features: a video, user's viewing behavior and evaluation scores for the video given by a target user. First, the proposed method applies Supervised Multiview Spectral Embedding (SMSE) to obtain lower-dimensional video features suitable for the following correlation analysis. Next, supervised Multi-View Canonical Correlation Analysis (sMVCCA) is applied to integrate the three kinds of features. Then we can get optimal projections to obtain new visual features, “canonical video features” reflecting the target user's individual preference for a video based on sMVCCA. Furthermore, in our method, we use not only the target user's viewing behavior but also other users' viewing behavior for obtaining the optimal canonical video features of the target user. This unique approach is the biggest contribution of this paper. Finally, by integrating these canonical video features, Support Vector Ordinal Regression with Implicit Constraints (SVORIM) is trained in our method. Consequently, the target user's preference for a video can be estimated by using the trained SVORIM. Experimental results show the effectiveness of our method.

  • A Compact Matched Filter Bank for an Optical ZCZ Sequence Set with Zero-Correlation Zone 2z

    Yasuaki OHIRA  Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER

      Vol:
    E101-A No:1
      Page(s):
    195-198

    In this paper, we propose a new structure for a compact matched filter bank (MFB) for an optical zero-correlation zone (ZCZ) sequence set with Zcz=2z. The proposed MFB can reduces operation elements such as 2-input adders and delay elements. The number of 2-input adders decrease from O(N2) to O(N log2 N), delay elements decrease from O(N2) to O(N). In addition, the proposed MFBs for the sequence of length 32, 64, 128 and 256 with Zcz=2,4 and 8 are implemented on a field programmable gate array (FPGA). As a result, the numbers of logic elements (LEs) of the proposed MFBs for the sequences with Zcz=2 of length 32, 64, 128 and 256 are suppressed to about 76.2%, 84.2%, 89.7% and 93.4% compared to that of the conventional MFBs, respectively.

  • Regular Expression Filtering on Multiple q-Grams

    Seon-Ho SHIN  HyunBong KIM  MyungKeun YOON  

     
    LETTER-Information Network

      Pubricized:
    2017/10/11
      Vol:
    E101-D No:1
      Page(s):
    253-256

    Regular expression matching is essential in network and big-data applications; however, it still has a serious performance bottleneck. The state-of-the-art schemes use a multi-pattern exact string-matching algorithm as a filtering module placed before a heavy regular expression engine. We design a new approximate string-matching filter using multiple q-grams; this filter not only achieves better space compactness, but it also has higher throughput than the existing filters.

  • Oscillation Model for Describing Network Dynamics Caused by Asymmetric Node Interaction Open Access

    Masaki AIDA  Chisa TAKANO  Masayuki MURATA  

     
    POSITION PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    123-136

    This paper proposes an oscillation model for analyzing the dynamics of activity propagation across social media networks. In order to analyze such dynamics, we generally need to model asymmetric interactions between nodes. In matrix-based network models, asymmetric interaction is frequently modeled by a directed graph expressed as an asymmetric matrix. Unfortunately, the dynamics of an asymmetric matrix-based model is difficult to analyze. This paper, first of all, discusses a symmetric matrix-based model that can describe some types of link asymmetry, and then proposes an oscillation model on networks. Next, the proposed oscillation model is generalized to arbitrary link asymmetry. We describe the outlines of four important research topics derived from the proposed oscillation model. First, we show that the oscillation energy of each node gives a generalized notion of node centrality. Second, we introduce a framework that uses resonance to estimate the natural frequency of networks. Natural frequency is important information for recognizing network structure. Third, by generalizing the oscillation model on directed networks, we create a dynamical model that can describe flaming on social media networks. Finally, we show the fundamental equation of oscillation on networks, which provides an important breakthrough for generalizing the spectral graph theory applicable to directed graphs.

  • BER Performance of SS System Using a Huffman Sequence against CW Jamming

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    167-175

    In this paper, we theoretically analyse the influence of intersymbol interference (ISI) and continuous wave interference (CWI) on the bit error rate (BER) performance of the spread spectrum (SS) system using a real-valued Huffman sequence under the additive white Gaussian noise (AWGN) environment. The aperiodic correlation function of the Huffman sequence has zero sidelobes except the shift-end values at the left and right ends of shift. The system can give the unified communication and ranging system because the output of a matched filter (MF) is the ideal impulse by generating transmitted signal of the bit duration T=NTc, N=2n, n=1,2,… from the sequence of length M=2kN+1, k=0,1,…, where Tc is the chip duration and N is the spreading factor. As a result, the BER performance of the system is improved with decrease in the absolute value of the shift-end value, and is not influenced by ISI if the shift-end value is almost zero-value. In addition, the BER performance of the system of the bit duration T=NTc with CWI is improved with increase in the sequence length M=2kN+1, and the system can decrease the influence of CWI.

  • Calibration Method for Multi Static Linear Array Radar with One Dimensional Array Antenna Arranged in Staggered Manner

    Yasunari MORI  Takayoshi YUMII  Yumi ASANO  Kyouji DOI  Christian N. KOYAMA  Yasushi IITSUKA  Kazunori TAKAHASHI  Motoyuki SATO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    26-34

    This paper presents a calibration method for RF switch channels of a near-range multistatic linear array radar. The method allows calibration of the channel transfer functions of the RF switches and antenna transfer functions in frequency domain data, without disconnecting the antennas from the radar system. In addition, the calibration of the channels is independent of the directivities of the transmitting and receiving antennas. We applied the calibration method to a 3D imaging step-frequency radar system at 10-20GHz suitable for the nondestructive inspection of the walls of wooden houses. The measurement range of the radar is limited to 0-240mm, shorter than the antenna array length 480mm. This radar system allows acquiring 3D imaging data with a single scan. Using synthetic aperture radar processing, the structural health of braces inside the walls of wooden houses can be evaluated from the obtained 3D volume images. Based on experiment results, we confirmed that the proposed calibration method significantly improves the subsurface 3D imaging quality. Low intensity ghost images behind the brace target were suppressed, deformations of the target in the volume image were rectified and errors the range distance were corrected.

  • Search for High-Rate Punctured Convolutional Codes through Transformed Identical Codes

    Sen MORIYA  Kana KIKUCHI  Hiroshi SASANO  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2607-2614

    In this study, we consider techniques to search for high-rate punctured convolutional code (PCC) encoders by rearranging row vectors of identical-encoder generator matrices. One well-known method to obtain a good PCC encoder is to perform an exhaustive search of all candidates. However, this approach is time-intensive. An exhaustive search with a rate RG=1/2 original encoder requires a relatively short time, whereas that with an RG=1/3 or lower original encoder takes significantly longer. The encoders with lower-rate original encoders are expected to create better PCC encoders. Thus, this paper proposes a method that uses exhaustive search results with rate RG=1/2 original encoders, and rearranges row vectors of identical-encoder generator matrices to create PCCs with a lower rate original code. Further, we provide PCC encoders obtained by searches that utilize our method.

  • A PLL Compiler from Specification to GDSII

    Toru NAKURA  Tetsuya IIZUKA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2741-2749

    This paper demonstrates a PLL compiler that generates the final GDSII data from a specification of input and output frequencies with PVT corner conditions. A Pulse Width Controlled PLLs (PWPLL) is composed of digital blocks, and thus suitable for being designed using a standard cell library and being layed out with a commercially available place-and-route (P&R) tool. A PWPLL has 8 design parameters. Our PLL compiler decides the 8 parameters and confirms the PLL operation with the following functions: 1) calculates rough parameter values based on an analytical model, 2) generates SPICE and gate-level verilog netlists with given parameter values, 3) runs SPICE simulations and analyzes the waveform, to examine the oscillation frequency or the voltage of specified nodes at a given time, 4) changes the parameter values to an appropriate direction depending on the waveform analyses to obtain the optimized parameter values, 5) generates scripts that can be used in commercial design tools and invokes the tools with the gate-level verilog netlist to get the final LVS/DRC-verified GDSII data from a P&R and a verification tools, and finally 6) generates the necessary characteristic summary sheets from the post-layout SPICE simulations extracted from the GDSII. Our compiler was applied to an 0.18µm standard CMOS technology to design a PLL with 600MHz output, 600/16MHz input frequency, and confirms the PLL operation with 1.2mW power and 85µm×85µm layout area.

  • Low Cost Wearable Sensor for Human Emotion Recognition Using Skin Conductance Response

    Khairun Nisa' MINHAD  Jonathan Shi Khai OOI  Sawal Hamid MD ALI  Mamun IBNE REAZ  Siti Anom AHMAD  

     
    PAPER-Biological Engineering

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    3010-3017

    Malaysia is one of the countries with the highest car crash fatality rates in Asia. The high implementation cost of in-vehicle driver behavior warning system and autonomous driving remains a significant challenge. Motivated by the large number of simple yet effective inventions that benefitted many developing countries, this study presents the findings of emotion recognition based on skin conductance response using a low-cost wearable sensor. Emotions were evoked by presenting the proposed display stimulus and driving stimulator. Meaningful power spectral density was extracted from the filtered signal. Experimental protocols and frameworks were established to reduce the complexity of the emotion elicitation process. The proof of concept in this work demonstrated the high accuracy of two-class and multiclass emotion classification results. Significant differences of features were identified using statistical analysis. This work is one of the most easy-to-use protocols and frameworks, but has high potential to be used as biomarker in intelligent automobile, which helps prevent accidents and saves lives through its simplicity.

  • Energy-Performance Modeling of Speculative Checkpointing for Exascale Systems

    Muhammad ALFIAN AMRIZAL  Atsuya UNO  Yukinori SATO  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER-High performance computing

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2749-2760

    Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.

  • A Spectrum Sharing Method Based on Users' Behavior and Providers' Profit

    Kazuhiko KINOSHITA  Yukika MARUYAMA  Keita KAWANO  Takashi WATANABE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1928-1938

    In recent years, spectrum sharing has received much attention as a technique for more efficient spectrum use. In the case in which all providers are cooperative, spectrum sensing can easily be realized and can improve user throughput (on average). If that is not the case, providers are not cooperative, i.e., spectrum trading, spectrum bands are rented to promote spectrum sharing. To ensure more profit, however, non-cooperative providers must correctly estimate the fluctuation of the number of connected users to be able to determine the offered channel price. In this paper, we propose a spectrum sharing method to achieve both higher throughput and provider profit via appropriate pricing using a disaggregate behavioral model. Finally, we confirm the effectiveness of the proposed method using simulation experiments.

  • A 100-MHz 51.2-Gb/s Packet Lookup Engine with Automatic Table Update Function

    Kousuke IMAMURA  Ryota HONDA  Yoshifumi KAWAMURA  Naoki MIURA  Masami URANO  Satoshi SHIGEMATSU  Tetsuya MATSUMURA  Yoshio MATSUDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:10
      Page(s):
    2123-2134

    The development of an extremely efficient packet inspection algorithm for lookup engines is important in order to realize high throughput and to lower energy dissipation. In this paper, we propose a new lookup engine based on a combination of a mismatch detection circuit and a linked-list hash table. The engine has an automatic rule registration and deletion function; the results are that it is only necessary to input rules, and the various tables included in the circuits, such as the Mismatch Table, Index Table, and Rule Table, will be automatically configured using the embedded hardware. This function utilizes a match/mismatch assessment for normal packet inspection operations. An experimental chip was fabricated using 40-nm 8-metal CMOS process technology. The chip operates at a frequency of 100MHz under a power supply voltage of VDD =1.1V. A throughput of 100Mpacket/s (=51.2Gb/s) is obtained at an operating frequency of 100MHz, which is three times greater than the throughput of 33Mpacket/s obtained with a conventional lookup engine without a mismatch detection circuit. The measured energy dissipation was a 1.58pJ/b·Search.

161-180hit(1274hit)