The search functionality is under construction.

Keyword Search Result

[Keyword] STA(3169hit)

121-140hit(3169hit)

  • Multi-Rate Switched Pinning Control for Velocity Control of Vehicle Platoons Open Access

    Takuma WAKASA  Kenji SAWADA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1461-1469

    This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.

  • An Anomalous Behavior Detection Method Utilizing Extracted Application-Specific Power Behaviors

    Kazunari TAKASAKI  Ryoichi KIDA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1555-1565

    With the widespread use of Internet of Things (IoT) devices in recent years, we utilize a variety of hardware devices in our daily life. On the other hand, hardware security issues are emerging. Power analysis is one of the methods to detect anomalous behaviors, but it is hard to apply it to IoT devices where an operating system and various software programs are running. In this paper, we propose an anomalous behavior detection method for an IoT device by extracting application-specific power behaviors. First, we measure power consumption of an IoT device, and obtain the power waveform. Next, we extract an application-specific power waveform by eliminating a steady factor from the obtained power waveform. Finally, we extract feature values from the application-specific power waveform and detect an anomalous behavior by utilizing the local outlier factor (LOF) method. We conduct two experiments to show how our proposed method works: one runs three application programs and an anomalous application program randomly and the other runs three application programs in series and an anomalous application program very rarely. Application programs on both experiments are implemented on a single board computer. The experimental results demonstrate that the proposed method successfully detects anomalous behaviors by extracting application-specific power behaviors, while the existing approaches cannot.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • Fitness-Distance Balance with Functional Weights: A New Selection Method for Evolutionary Algorithms

    Kaiyu WANG  Sichen TAO  Rong-Long WANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/07/21
      Vol:
    E104-D No:10
      Page(s):
    1789-1792

    In 2019, a new selection method, named fitness-distance balance (FDB), was proposed. FDB has been proved to have a significant effect on improving the search capability for evolutionary algorithms. But it still suffers from poor flexibility when encountering various optimization problems. To address this issue, we propose a functional weights-enhanced FDB (FW). These functional weights change the original weights in FDB from fixed values to randomly generated ones by a distribution function, thereby enabling the algorithm to select more suitable individuals during the search. As a case study, FW is incorporated into the spherical search algorithm. Experimental results based on various IEEE CEC2017 benchmark functions demonstrate the effectiveness of FW.

  • Formal Modeling and Verification of Concurrent FSMs: Case Study on Event-Based Cooperative Transport Robots

    Yoshinao ISOBE  Nobuhiko MIYAMOTO  Noriaki ANDO  Yutaka OIWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:10
      Page(s):
    1515-1532

    In this paper, we demonstrate that a formal approach is effective for improving reliability of cooperative robot designs, where the control logics are expressed in concurrent FSMs (Finite State Machines), especially in accordance with the standard FSM4RTC (FSM for Robotic Technology Components), by a case study of cooperative transport robots. In the case study, FSMs are modeled in the formal specification language CSP (Communicating Sequential Processes) and checked by the model-checking tool FDR, where we show techniques for modeling and verification of cooperative robots implemented with the help of the RTM (Robotic Technology Middleware).

  • A Study on Highly Efficient Dual-Input Power Amplifiers for Large PAPR Signals Open Access

    Atsushi YAMAOKA  Thomas M. HONE  Yoshimasa EGASHIRA  Keiichi YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-C No:10
      Page(s):
    506-515

    With the advent of 5G and external pressure to reduce greenhouse gas emissions, wireless transceivers with low power consumption are strongly desired for future cellular systems. At the same time, increased modulation order due to the evolution of cellular systems will force power amplifiers to operate at much larger output power back-off to prevent EVM degradation. This paper begins with an analysis of load modulation and asymmetrical Doherty amplifiers. Measurement results will show an apparent 60% efficiency plateau for modulated signals with a large peak-to-average power ratio (PAPR). To exceed this efficiency limitation, the second part of this paper focuses on a new amplification topology based on the amalgamation between Doherty and outphasing. Measurement results of the proposed Doherty-outphasing power amplifier (DOPA) will confirm the feasibility of the approach with a modulated efficiency greater than 70% measured at 10 dB output power back-off.

  • Overview and Prospects of High Power Amplifier Technology Trend for 5G and beyond 5G Base Stations Open Access

    Koji YAMANAKA  Shintaro SHINJO  Yuji KOMATSUZAKI  Shuichi SAKATA  Keigo NAKATANI  Yutaro YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    526-533

    High power amplifier technologies for base transceiver stations (BTSs) for the 5th generation (5G) mobile communication systems and so-called beyond 5G (B5G) systems are reviewed. For sub-6, which is categorized into frequency range 1 (FR1) in 5G, wideband Doherty amplifiers are introduced, and a multi-band load modulation amplifier, an envelope tracking amplifier, and a digital power amplifier for B5G are explained. For millimeter wave 5G, which is categorized into frequency range 2 (FR2), GaAs and GaN MMICs operating at around 28GHz are introduced. Finally, future prospect for THz GaN devices is described.

  • Asymptotic Stabilization of a Chain of Integrators by an Event-Triggered Gain-Scaling Controller

    Sang-Young OH  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2021/04/14
      Vol:
    E104-A No:10
      Page(s):
    1421-1424

    We consider an asymptotic stabilization problem for a chain of integrators by using an event-triggered controller. The times required between event-triggered executions and controller updates are uncertain, time-varying, and not necessarily small. We show that the considered system can be asymptotically stabilized by an event-triggered gain-scaling controller. Also, we show that the interexecution times are lower bounded and their lower bounds can be manipulated by a gain-scaling factor. Some future extensions are also discussed. An example is given for illustration.

  • Linearization Technologies for High Efficiency Power Amplifier of Cellular Base Stations Open Access

    Yasunori SUZUKI  Shoichi NARAHASHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/24
      Vol:
    E104-C No:10
      Page(s):
    534-542

    This paper presents linearization technologies for high efficiency power amplifiers of cellular base stations. These technologies are important to actualizing highly efficient power amplifiers that reduce power consumption of the base station equipment and to achieving a sufficient non-linear distortion compensation level. It is well known that it is very difficult for a power amplifier using linearization technologies to achieve simultaneously high efficiency and a sufficient non-linear distortion compensation level. This paper presents two approaches toward addressing this technical issue. The first approach is a feed-forward power amplifier using the Doherty amplifier as the main amplifier. The second approach is a digital predistortion linearizer that compensates for frequency dependent intermodulation distortion components. Experimental results validate these approaches as effective for providing power amplification for base stations.

  • Analytical Model of Middlebox Unavailability under Shared Protection Allowing Multiple Backups

    Risa FUJITA  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1147-1158

    This paper presents an analytical model that yields the unavailability of a network function when each backup server can protect two functions and can recover one of them. Previous work describes a model to deal with the case that each function can be protected only by one server. In our model, we allow each function to be protected by multiple servers to ensure function availability. This requires us to know the feasible states of a connected component and its state transitions. By adopting the divide-and-conquer method, we enumerate the feasible states of a connected component. We then classify its state transitions. Based on the obtained feasible states and the classification of the state transitions, we enumerate the feasible states incoming to and outgoing from a general state, the transfer rates, and the conditions. With those informations, we generate multiple equations about the state transitions. Finally, by solving them, we obtain the probabilities that a connected component is in each state and calculate the unavailability of a function. Numerical results show that the average unavailability of a function is reduced by 18% and 5.7% in our two examined cases by allowing each function to be protected by multiple servers.

  • Private Information Retrieval from Coded Storage in the Presence of Omniscient and Limited-Knowledge Byzantine Adversaries Open Access

    Jun KURIHARA  Toru NAKAMURA  Ryu WATANABE  

     
    PAPER-Coding Theory

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1271-1283

    This paper investigates an adversarial model in the scenario of private information retrieval (PIR) from n coded storage servers, called Byzantine adversary. The Byzantine adversary is defined as the one altering b server responses and erasing u server responses to a user's query. In this paper, two types of Byzantine adversaries are considered; 1) the classic omniscient type that has the full knowledge on n servers as considered in existing literature, and 2) the reasonable limited-knowledge type that has information on only b+u servers, i.e., servers under the adversary's control. For these two types, this paper reveals that the resistance of a PIR scheme, i.e., the condition of b and u to correctly obtain the desired message, can be expressed in terms of a code parameter called the coset distance of linear codes employed in the scheme. For the omniscient type, the derived condition expressed by the coset distance is tighter and more precise than the estimation of the resistance by the minimum Hamming weight of the codes considered in existing researches. Furthermore, this paper also clarifies that if the adversary is limited-knowledge, the resistance of a PIR scheme could exceed that for the case of the omniscient type. Namely, PIR schemes can increase their resistance to Byzantine adversaries by allowing the limitation on adversary's knowledge.

  • Gated Convolutional Neural Networks with Sentence-Related Selection for Distantly Supervised Relation Extraction

    Yufeng CHEN  Siqi LI  Xingya LI  Jinan XU  Jian LIU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1486-1495

    Relation extraction is one of the key basic tasks in natural language processing in which distant supervision is widely used for obtaining large-scale labeled data without expensive labor cost. However, the automatically generated data contains massive noise because of the wrong labeling problem in distant supervision. To address this problem, the existing research work mainly focuses on removing sentence-level noise with various sentence selection strategies, which however could be incompetent for disposing word-level noise. In this paper, we propose a novel neural framework considering both intra-sentence and inter-sentence relevance to deal with word-level and sentence-level noise from distant supervision, which is denoted as Sentence-Related Gated Piecewise Convolutional Neural Networks (SR-GPCNN). Specifically, 1) a gate mechanism with multi-head self-attention is adopted to reduce word-level noise inside sentences; 2) a soft-label strategy is utilized to alleviate wrong-labeling propagation problem; and 3) a sentence-related selection model is designed to filter sentence-level noise further. The extensive experimental results on NYT dataset demonstrate that our approach filters word-level and sentence-level noise effectively, thus significantly outperforms all the baseline models in terms of both AUC and top-n precision metrics.

  • Performance of Circular 32QAM/64QAM Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDM

    Chihiro MORI  Miyu NAKABAYASHI  Mamoru SAWAHASHI  Teruo KAWAMURA  Nobuhiko MIKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1054-1066

    This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.

  • Update on Analysis of Lesamnta-LW and New PRF Mode LRF

    Shoichi HIROSE  Yu SASAKI  Hirotaka YOSHIDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/03/16
      Vol:
    E104-A No:9
      Page(s):
    1304-1320

    We revisit the design of Lesamnta-LW, which is one of the three lightweight hash functions specified in ISO/IEC 29192-5:2016. Firstly, we present some updates on the bounds of the number of active S-boxes for the underlying 64-round block cipher. While the designers showed that the Viterbi algorithm ensured 24 active S-boxes after 24 rounds, our tool based on Mixed Integer Linear Programming (MILP) in the framework of Mouha et al. ensures the same number of active S-boxes only after 18 rounds. The tool completely evaluates the tight bound of the number of active S-boxes, and it shows that the bound is 103 for full (64) rounds. We also analyze security of the Shuffle operation in the round function and resistance against linear cryptanalysis. Secondly, we present a new mode for a pseudorandom function (PRF) based on Lesamnta-LW. It is twice as efficient as the previous PRF modes based on Lesamnta-LW. We prove its security both in the standard model and the ideal cipher model.

  • Explanatory Rule Generation for Advanced Driver Assistant Systems

    Juha HOVI  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/11
      Vol:
    E104-D No:9
      Page(s):
    1427-1439

    Autonomous vehicles and advanced driver assistant systems (ADAS) are receiving notable attention as research fields in both academia and private industry. Some decision-making systems use sets of logical rules to map knowledge of the ego-vehicle and its environment into actions the ego-vehicle should take. However, such rulesets can be difficult to create — for example by manually writing them — due to the complexity of traffic as an operating environment. Furthermore, the building blocks of the rules must be defined. One common solution to this is using an ontology specifically aimed at describing traffic concepts and their hierarchy. These ontologies must have a certain expressive power to enable construction of useful rules. We propose a process of generating sets of explanatory rules for ADAS applications from data using ontology as a base vocabulary and present a ruleset generated as a result of our experiments that is correct for the scope of the experiment.

  • Nonvolatile Field-Programmable Gate Array Using a Standard-Cell-Based Design Flow

    Daisuke SUZUKI  Takahiro HANYU  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/16
      Vol:
    E104-D No:8
      Page(s):
    1111-1120

    A nonvolatile field-programmable gate array (NV-FPGA), where the circuit-configuration information still remains without power supply, offers a powerful solution against the standby power issue. In this paper, an NV-FPGA is proposed where the programmable logic and interconnect function blocks are described in a hardware description language and are pushed through a standard-cell-based design flow with nonvolatile flip-flops. The use of the standard-cell-based design flow makes it possible to migrate any arbitrary process technology and to perform architecture-level simulation with physical information. As a typical example, the proposed NV-FPGA is designed under 55nm CMOS/100nm magnetic tunnel junction (MTJ) technologies, and the performance of the proposed NV-FPGA is evaluated in comparison with that of a CMOS-only volatile FPGA.

  • Heuristic Approach to Distributed Server Allocation with Preventive Start-Time Optimization against Server Failure

    Souhei YANASE  Shuto MASUDA  Fujun HE  Akio KAWABATA  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2021/02/01
      Vol:
    E104-B No:8
      Page(s):
    942-950

    This paper presents a distributed server allocation model with preventive start-time optimization against a single server failure. The presented model preventively determines the assignment of servers to users under each failure pattern to minimize the largest maximum delay among all failure patterns. We formulate the proposed model as an integer linear programming (ILP) problem. We prove the NP-completeness of the considered problem. As the number of users and that of servers increase, the size of ILP problem increases; the computation time to solve the ILP problem becomes excessively large. We develop a heuristic approach that applies simulated annealing and the ILP approach in a hybrid manner to obtain the solution. Numerical results reveal that the developed heuristic approach reduces the computation time by 26% compared to the ILP approach while increasing the largest maximum delay by just 3.4% in average. It reduces the largest maximum delay compared with the start-time optimization model; it avoids the instability caused by the unnecessary disconnection permitted by the run-time optimization model.

  • On Measurement System for Frequency of Uterine Peristalsis

    Ryosuke NISHIHARA  Hidehiko MATSUBAYASHI  Tomomoto ISHIKAWA  Kentaro MORI  Yutaka HATA  

     
    PAPER-Medical Applications

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1154-1160

    The frequency of uterine peristalsis is closely related to the success rate of pregnancy. An ultrasonic imaging is almost always employed for the measure of the frequency. The physician subjectively evaluates the frequency from the ultrasound image by the naked eyes. This paper aims to measure the frequency of uterine peristalsis from the ultrasound image. The ultrasound image consists of relative amounts in the brightness, and the contour of the uterine is not clear. It was not possible to measure the frequency by using the inter-frame difference and optical flow, which are the representative methods of motion detection, since uterine peristaltic movement is too small to apply them. This paper proposes a measurement method of the frequency of the uterine peristalsis from the ultrasound image in the implantation phase. First, traces of uterine peristalsis are semi-automatically done from the images with location-axis and time-axis. Second, frequency analysis of the uterine peristalsis is done by Fourier transform for 3 minutes. As a result, the frequency of uterine peristalsis was known as the frequency with the dominant frequency ingredient with maximum value among the frequency spectrums. Thereby, we evaluate the number of the frequency of uterine peristalsis quantitatively from the ultrasound image. Finally, the success rate of pregnancy is calculated from the frequency based on Fuzzy logic. This enabled us to evaluate the success rate of pregnancy by measuring the uterine peristalsis from the ultrasound image.

  • Two-Stage Fine-Grained Text-Level Sentiment Analysis Based on Syntactic Rule Matching and Deep Semantic

    Weizhi LIAO  Yaheng MA  Yiling CAO  Guanglei YE  Dongzhou ZUO  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1274-1280

    Aiming at the problem that traditional text-level sentiment analysis methods usually ignore the emotional tendency corresponding to the object or attribute. In this paper, a novel two-stage fine-grained text-level sentiment analysis model based on syntactic rule matching and deep semantics is proposed. Based on analyzing the characteristics and difficulties of fine-grained sentiment analysis, a two-stage fine-grained sentiment analysis algorithm framework is constructed. In the first stage, the objects and its corresponding opinions are extracted based on syntactic rules matching to obtain preliminary objects and opinions. The second stage based on deep semantic network to extract more accurate objects and opinions. Aiming at the problem that the extraction result contains multiple objects and opinions to be matched, an object-opinion matching algorithm based on the minimum lexical separation distance is proposed to achieve accurate pairwise matching. Finally, the proposed algorithm is evaluated on several public datasets to demonstrate its practicality and effectiveness.

  • Room Temperature Atomic Layer Deposition of Nano Crystalline ZnO and Its Application for Flexible Electronics

    Kazuki YOSHIDA  Kentaro SAITO  Keito SOGAI  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER-Electronic Materials

      Pubricized:
    2020/11/26
      Vol:
    E104-C No:7
      Page(s):
    363-369

    Nano crystalline zinc oxide (ZnO) is deposited by room temperature atomic layer deposition (RT-ALD) using dimethylzinc and a plasma excited humidified Ar without thermal treatments. The TEM observation indicated that the deposited ZnO films were crystallized with grain sizes of ∼20 nm on Si in the course of the RT-ALD process. The crystalline ZnO exhibited semiconducting characteristics in a thin film transistor, where the field-effect mobility was recorded at 1.29×10-3cm2/V·s. It is confirmed that the RT deposited ZnO film has an anticorrosion to hot water. The water vapor transmission rate of 8.4×10-3g·m-2·day-1 was measured from a 20 nm thick ZnO capped 40 nm thick Al2O3 on a polyethylene naphthalate film. In this paper, we discuss the crystallization of ZnO in the RT ALD process and its applicability to flexible electronics.

121-140hit(3169hit)