The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SU(4519hit)

181-200hit(4519hit)

  • Surrogate-Based EM Optimization Using Neural Networks for Microwave Filter Design Open Access

    Masataka OHIRA  Zhewang MA  

     
    INVITED PAPER

      Pubricized:
    2022/03/15
      Vol:
    E105-C No:10
      Page(s):
    466-473

    A surrogate-based electromagnetic (EM) optimization using neural networks (NNs) is presented for computationally efficient microwave bandpass filter (BPF) design. This paper first describes the forward problem (EM analysis) and the inverse problems (EM design), and the two fundamental issues in BPF designs. The first issue is that the EM analysis is a time-consuming task, and the second one is that EM design highly depends on the structural optimization performed with the help of EM analysis. To accelerate the optimization design, two surrogate models of forward and inverse models are introduced here, which are built with the NNs. As a result, the inverse model can instantaneously guess initial structural parameters with high accuracy by simply inputting synthesized coupling-matrix elements into the NN. Then, the forward model in conjunction with optimization algorithm enables designers to rapidly find optimal structural parameters from the initial ones. The effectiveness of the surrogate-based EM optimization is verified through the structural designs of a typical fifth-order microstrip BPF with multiple couplings.

  • 13.56MHz Half-Bridge GaN-HEMT Resonant Inverter Achieving High Power, Low Distortion, and High Efficiency by ‘L-S Network’ Open Access

    Aoi OYANE  Thilak SENANAYAKE  Mitsuru MASUDA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:9
      Page(s):
    407-418

    This paper proposes a topology of high power, MHz-frequency, half-bridge resonant inverter ideal for low-loss Gallium Nitride high electron mobility transistor (GaN-HEMT). General GaN-HEMTs have drawback of low drain-source breakdown voltage. This property has prevented conventional high-frequency series resonant inverters from delivering high power to high resistance loads such as 50Ω, which is typically used in radio frequency (RF) systems. High resistance load causes hard-switching also and reduction of power efficiency. The proposed topology overcomes these difficulties by utilizing a proposed ‘L-S network’. This network is effective combination of a simple impedance converter and a series resonator. The proposed topology provides not only high power for high resistance load but also arbitrary design of output wattage depending on impedance conversion design. In addition, the current through the series resonator is low in the L-S network. Hence, this series resonator can be designed specifically for harmonic suppression with relatively high quality-factor and zero reactance. Low-distortion sinusoidal 3kW output is verified in the proposed inverter at 13.56MHz by computer simulations. Further, 99.4% high efficiency is achieved in the power circuit in 471W experimental prototype.

  • On the Sum-of-Squares of Differential Distribution Table for (n, n)-Functions

    Rong CHENG  Yu ZHOU  Xinfeng DONG  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1322-1329

    S-box is one of the core components of symmetric cryptographic algorithms, but differential distribution table (DDT) is an important tool to research some properties of S-boxes to resist differential attacks. In this paper, we give a relationship between the sum-of-squares of DDT and the sum-of-squares indicator of (n, m)-functions based on the autocorrelation coefficients. We also get some upper and lower bounds on the sum-of-squares of DDT of balanced (n, m)-functions, and prove that the sum-of-squares of DDT of (n, m)-functions is affine invariant under affine affine equivalent. Furthermore, we obtain a relationship between the sum-of-squares of DDT and the signal-to-noise ratio of (n, m)-functions. In addition, we calculate the distributions of the sum-of-squares of DDT for all 3-bit S-boxes, the 4-bit optimal S-boxes and all 302 balanced S-boxes (up to affine equivalence), data experiments verify our results.

  • Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient

    Takaharu KATO  Ikuko SHIMIZU  Tomas PAJDLA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1590-1599

    Selecting visually overlapping image pairs without any prior information is an essential task of large-scale structure from motion (SfM) pipelines. To address this problem, many state-of-the-art image retrieval systems adopt the idea of bag of visual words (BoVW) for computing image-pair similarity. In this paper, we present a method for improving the image pair selection using BoVW. Our method combines a conventional vector-based approach and a set-based approach. For the set similarity, we introduce a modified version of the Simpson (m-Simpson) coefficient. We show the advantage of this measure over three typical set similarity measures and demonstrate that the combination of vector similarity and the m-Simpson coefficient effectively reduces false positives and increases accuracy. To discuss the choice of vocabulary construction, we prepared both a sampled vocabulary on an evaluation dataset and a basic pre-trained vocabulary on a training dataset. In addition, we tested our method on vocabularies of different sizes. Our experimental results show that the proposed method dramatically improves precision scores especially on the sampled vocabulary and performs better than the state-of-the-art methods that use pre-trained vocabularies. We further introduce a method to determine the k value of top-k relevant searches for each image and show that it obtains higher precision at the same recall.

  • BCGL: Binary Classification-Based Graph Layout

    Kai YAN  Tiejun ZHAO  Muyun YANG  

     
    PAPER-Computer Graphics

      Pubricized:
    2022/05/30
      Vol:
    E105-D No:9
      Page(s):
    1610-1619

    Graph layouts reveal global or local structures of graph data. However, there are few studies on assisting readers in better reconstructing a graph from a layout. This paper attempts to generate a layout whose edges can be reestablished. We reformulate the graph layout problem as an edge classification problem. The inputs are the vertex pairs, and the outputs are the edge existences. The trainable parameters are the laid-out coordinates of the vertices. We propose a binary classification-based graph layout (BCGL) framework in this paper. This layout aims to preserve the local structure of the graph and does not require the total similarity relationships of the vertices. We implement two concrete algorithms under the BCGL framework, evaluate our approach on a wide variety of datasets, and draw comparisons with several other methods. The evaluations verify the ability of the BCGL in local neighborhood preservation and its visual quality with some classic metrics.

  • A novel Adaptive Weighted Transfer Subspace Learning Method for Cross-Database Speech Emotion Recognition

    Keke ZHAO  Peng SONG  Shaokai LI  Wenjing ZHANG  Wenming ZHENG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/06/09
      Vol:
    E105-D No:9
      Page(s):
    1643-1646

    In this letter, we present an adaptive weighted transfer subspace learning (AWTSL) method for cross-database speech emotion recognition (SER), which can efficiently eliminate the discrepancy between source and target databases. Specifically, on one hand, a subspace projection matrix is first learned to project the cross-database features into a common subspace. At the same time, each target sample can be represented by the source samples by using a sparse reconstruction matrix. On the other hand, we design an adaptive weighted matrix learning strategy, which can improve the reconstruction contribution of important features and eliminate the negative influence of redundant features. Finally, we conduct extensive experiments on four benchmark databases, and the experimental results demonstrate the efficacy of the proposed method.

  • Bridging between Soft and Hard Thresholding by Scaling

    Katsuyuki HAGIWARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/06/09
      Vol:
    E105-D No:9
      Page(s):
    1529-1536

    This study considered an extension of a sparse regularization method with scaling, especially in thresholding methods that are simple and typical examples of sparse modeling. In this study, in the setting of a non-parametric orthogonal regression problem, we developed and analyzed a thresholding method in which soft thresholding estimators are independently expanded by empirical scaling values. The scaling values have a common hyper-parameter that is an order of expansion of an ideal scaling value to achieve hard thresholding. We simply refer to this estimator as a scaled soft thresholding estimator. The scaled soft thresholding method is a bridge method between soft and hard thresholding methods. This new estimator is indeed consistent with an adaptive LASSO estimator in the orthogonal case; i.e., it is thus an another derivation of an adaptive LASSO estimator. It is a general method that includes soft thresholding and non-negative garrote as special cases. We subsequently derived the degree of freedom of the scaled soft thresholding in calculating the Stein's unbiased risk estimate. We found that it is decomposed into the degree of freedom of soft thresholding and the remainder term connecting to the hard thresholding. As the degree of freedom reflects the degree of over-fitting, this implies that the scaled soft thresholding has an another source of over-fitting in addition to the number of un-removed components. The theoretical result was verified by a simple numerical example. In this process, we also focused on the non-monotonicity in the above remainder term of the degree of freedom and found that, in a sparse and large sample setting, it is mainly caused by useless components that are not related to the target function.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Optimal Algorithm for Finding Representation of Subtree Distance

    Takanori MAEHARA  Kazutoshi ANDO  

     
    PAPER-Algorithms and Data Structures, Graphs and Networks

      Pubricized:
    2022/04/19
      Vol:
    E105-A No:9
      Page(s):
    1203-1210

    In this paper, we address the problem of finding a representation of a subtree distance, which is an extension of a tree metric. We show that a minimal representation is uniquely determined by a given subtree distance, and give an O(n2) time algorithm that finds such a representation, where n is the size of the ground set. Since a lower bound of the problem is Ω(n2), our algorithm achieves the optimal time complexity.

  • MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles

    Lianshan SUN  Jingxue WEI  Hanchao DU  Yongbin ZHANG  Lifeng HE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/30
      Vol:
    E105-D No:9
      Page(s):
    1652-1655

    This paper presents an improved YOLOv3 network, named MSFF-YOLOv3, for precisely detecting variable surface defects of aluminum profiles in practice. First, we introduce a larger prediction scale to provide detailed information for small defect detection; second, we design an efficient attention-guided block to extract more features of defects with less overhead; third, we design a bottom-up pyramid and integrate it with the existing feature pyramid network to construct a twin-tower structure to improve the circulation and fusion of features of different layers. In addition, we employ the K-median algorithm for anchor clustering to speed up the network reasoning. Experimental results showed that the mean average precision of the proposed network MSFF-YOLOv3 is higher than all conventional networks for surface defect detection of aluminum profiles. Moreover, the number of frames processed per second for our proposed MSFF-YOLOv3 could meet real-time requirements.

  • Integral Cryptanalysis on Reduced-Round KASUMI

    Nobuyuki SUGIO  Yasutaka IGARASHI  Sadayuki HONGO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/04/22
      Vol:
    E105-A No:9
      Page(s):
    1309-1316

    Integral cryptanalysis is one of the most powerful attacks on symmetric key block ciphers. Attackers preliminarily search integral characteristics of a target cipher and use them to perform the key recovery attack. Todo proposed a novel technique named the bit-based division property to find integral characteristics. Xiang et al. extended the Mixed Integer Linear Programming (MILP) method to search integral characteristics of lightweight block ciphers based on the bit-based division property. In this paper, we apply these techniques to the symmetric key block cipher KASUMI which was developed by modifying MISTY1. As a result, we found new 4.5-round characteristics of KASUMI for the first time. We show that 7-round KASUMI is attackable with 263 data and 2120 encryptions.

  • Moon-or-Sun, Nagareru, and Nurimeizu are NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/01
      Vol:
    E105-A No:9
      Page(s):
    1187-1194

    Moon-or-Sun, Nagareru, and Nurimeizu are Nikoli's pencil puzzles. We study the computational complexity of Moon-or-Sun, Nagareru, and Nurimeizu puzzles. It is shown that deciding whether a given instance of each puzzle has a solution is NP-complete.

  • Highly-Accurate and Real-Time Speech Measurement for Laser Doppler Vibrometers

    Yahui WANG  Wenxi ZHANG  Zhou WU  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1568-1580

    Laser Doppler Vibrometers (LDVs) enable the acquisition of remote speech signals by measuring small-scale vibrations around a target. They are now widely used in the fields of information acquisition and national security. However, in remote speech detection, the coherent measurement signal is subject to environmental noise, making detecting and reconstructing speech signals challenging. To improve the detection distance and speech quality, this paper proposes a highly accurate real-time speech measurement method that can reconstruct speech from noisy coherent signals. First, the I/Q demodulation and arctangent phase discrimination are used to extract the phase transformation caused by the acoustic vibration from coherent signals. Then, an innovative smoothness criterion and a novel phase difference-based dynamic bilateral compensation phase unwrapping algorithm are used to remove any ambiguity caused by the arctangent phase discrimination in the previous step. This important innovation results in the highly accurate detection of phase jumps. After this, a further innovation is used to enhance the reconstructed speech by applying an improved waveform-based linear prediction coding method, together with adaptive spectral subtraction. This removes any impulsive or background noise. The accuracy and performance of the proposed method were validated by conducting extensive simulations and comparisons with existing techniques. The results show that the proposed algorithm can significantly improve the measurement of speech and the quality of reconstructed speech signals. The viability of the method was further assessed by undertaking a physical experiment, where LDV equipment was used to measure speech at a distance of 310m in an outdoor environment. The intelligibility rate for the reconstructed speech exceeded 95%, confirming the effectiveness and superiority of the method for long-distance laser speech measurement.

  • Rate-Encoding A/D Converter Based on Spiking Neuron Model with Rectangular Wave Threshold Signal

    Yusuke MATSUOKA  Hiroyuki KAWASAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1101-1109

    This paper proposes and characterizes an A/D converter (ADC) based on a spiking neuron model with a rectangular threshold signal. The neuron repeats an integrate-and-fire process and outputs a superstable spike sequence. The dynamics of this system are closely related to those of rate-encoding ADCs. We propose an ADC system based on the spiking neuron model. We derive a theoretical parameter region in a limited time interval of the digital output sequence. We analyze the conversion characteristics in this region and verify that they retain the monotonic increase and rate encoding of an ADC.

  • Diabetes Noninvasive Recognition via Improved Capsule Network

    Cunlei WANG  Donghui LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:8
      Page(s):
    1464-1471

    Noninvasive recognition is an important trend in diabetes recognition. Unfortunately, the accuracy obtained from the conventional noninvasive recognition methods is low. This paper proposes a novel Diabetes Noninvasive Recognition method via the plantar pressure image and improved Capsule Network (DNR-CapsNet). The input of the proposed method is a plantar pressure image, and the output is the recognition result: healthy or possibly diabetes. The ResNet18 is used as the backbone of the convolutional layers to convert pixel intensities to local features in the proposed DNR-CapsNet. Then, the PrimaryCaps layer, SecondaryCaps layer, and DiabetesCaps layer are developed to achieve the diabetes recognition. The semantic fusion and locality-constrained dynamic routing are also developed to further improve the recognition accuracy in our method. The experimental results indicate that the proposed method has a better performance on diabetes noninvasive recognition than the state-of-the-art methods.

  • Obstacle Detection for Unmanned Surface Vehicles by Fusion Refinement Network

    Weina ZHOU  Xinxin HUANG  Xiaoyang ZENG  

     
    PAPER-Information Network

      Pubricized:
    2022/05/12
      Vol:
    E105-D No:8
      Page(s):
    1393-1400

    As a kind of marine vehicles, Unmanned Surface Vehicles (USV) are widely used in military and civilian fields because of their low cost, good concealment, strong mobility and high speed. High-precision detection of obstacles plays an important role in USV autonomous navigation, which ensures its subsequent path planning. In order to further improve obstacle detection performance, we propose an encoder-decoder architecture named Fusion Refinement Network (FRN). The encoder part with a deeper network structure enables it to extract more rich visual features. In particular, a dilated convolution layer is used in the encoder for obtaining a large range of obstacle features in complex marine environment. The decoder part achieves the multiple path feature fusion. Attention Refinement Modules (ARM) are added to optimize features, and a learnable fusion algorithm called Feature Fusion Module (FFM) is used to fuse visual information. Experimental validation results on three different datasets with real marine images show that FRN is superior to state-of-the-art semantic segmentation networks in performance evaluation. And the MIoU and MPA of the FRN can peak at 97.01% and 98.37% respectively. Moreover, FRN could maintain a high accuracy with only 27.67M parameters, which is much smaller than the latest obstacle detection network (WaSR) for USV.

  • Control of Radiation Direction in an Aperture Array Excited by a Waveguide 2-Plane Hybrid Coupler

    Yuki SUNAGUCHI  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/02/10
      Vol:
    E105-B No:8
      Page(s):
    906-912

    This paper details the design of a plate that controls the beam direction in an aperture array excited by a waveguide 2-plane hybrid coupler. The beam direction can be controlled in the range of ±15-32deg. in the quasi H-plane, and ±26-54deg. in the quasi E-plane at the design frequency of 66.425GHz. Inductive irises are introduced into tapered waveguides in the plate and the reflection is suppressed by narrow apertures. A plate that has a larger tilt angle in the quasi E-plane and another plate with conventional rectangular waveguide ports as a reference are fabricated and measured. The measured values agree well with the simulation results.

  • Convolutional Neural Networks Based Dictionary Pair Learning for Visual Tracking

    Chenchen MENG  Jun WANG  Chengzhi DENG  Yuanyun WANG  Shengqian WANG  

     
    PAPER-Vision

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1147-1156

    Feature representation is a key component of most visual tracking algorithms. It is difficult to deal with complex appearance changes with low-level hand-crafted features due to weak representation capacities of such features. In this paper, we propose a novel tracking algorithm through combining a joint dictionary pair learning with convolutional neural networks (CNN). We utilize CNN model that is trained on ImageNet-Vid to extract target features. The CNN includes three convolutional layers and two fully connected layers. A dictionary pair learning follows the second fully connected layer. The joint dictionary pair is learned upon extracted deep features by the trained CNN model. The temporal variations of target appearances are learned in the dictionary learning. We use the learned dictionaries to encode target candidates. A linear combination of atoms in the learned dictionary is used to represent target candidates. Extensive experimental evaluations on OTB2015 demonstrate the superior performances against SOTA trackers.

  • Bitstream-Quality-Estimation Model for Tile-Based VR Video Streaming Services Open Access

    Masanori KOIKE  Yuichiro URATA  Kazuhisa YAMAGISHI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    1002-1013

    Tile-based virtual reality (VR) video consists of high-resolution tiles that are displayed in accordance with the users' viewing directions and a low-resolution tile that is the entire VR video and displayed when users change their viewing directions. Whether users perceive quality degradation when watching tile-based VR video depends on high-resolution tile size, the quality of high- and low-resolution tiles, and network condition. The display time of low-resolution tile (hereafter delay) affects users' perceived quality because longer delay makes users watch the low-resolution tiles longer. Since these degradations of low-resolution tiles markedly affect users' perceived quality, these points have to be considered in the quality-estimation model. Therefore, we propose a bitstream-quality-estimation model for tile-based VR video streaming services and investigate the effect of bitstream parameters and delay on tile-based VR video quality. Subjective experiments on several videos of different qualities and a comparison between other video quality-estimation models were conducted. In this paper, we prove that the proposed model can improve the quality-estimation accuracy by using the high- and low-resolution tiles' quantization parameters, resolution, framerate, and delay. Subjective experimental results show that the proposed model can estimate the quality of tile-based VR video more accurately than other video quality-estimation models.

  • A 0.37mm2 Fully-Integrated Wide Dynamic Range Sub-GHz Receiver Front-End without Off-Chip Matching Components

    Yuncheng ZHANG  Bangan LIU  Teruki SOMEYA  Rui WU  Junjun QIU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2022/01/20
      Vol:
    E105-C No:7
      Page(s):
    334-342

    This paper presents a fully integrated yet compact receiver front-end for Sub-GHz applications such as Internet-of-Things (IoT). The low noise amplifier (LNA) matching network leverages an inductance boosting technique. A relatively small on-chip inductor with a compact area achieves impedance matching in such a low frequency. Moreover, a passive-mixer-first mode bypasses the LNA to extend the receiver dynamic-range. The passive mixer provides matching to the 50Ω antenna interface to eliminate the need for additional passive components. Therefore, the receiver can be fully-integrated without any off-chip matching components. The flipped-voltage-follower (FVF) cell is adopted in the low pass filter (LPF) and the variable gain amplifier (VGA) for its high linearity and low power consumption. Fabricated in 65nm LP CMOS process, the proposed receiver front-end occupies 0.37mm2 core area, with a tolerable input power ranging from -91.5dBm to -1dBm for 500kbps GMSK signal at 924MHz frequency. The power consumption is 1mW power under a 1.2V supply.

181-200hit(4519hit)