The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

4061-4080hit(21534hit)

  • Using Super-Pixels and Human Probability Map for Automatic Human Subject Segmentation

    Esmaeil POURJAM  Daisuke DEGUCHI  Ichiro IDE  Hiroshi MURASE  

     
    PAPER-Image

      Vol:
    E99-A No:5
      Page(s):
    943-953

    Human body segmentation has many applications in a wide variety of image processing tasks, from intelligent vehicles to entertainment. A substantial amount of research has been done in the field of segmentation and it is still one of the active research areas, resulting in introduction of many innovative methods in literature. Still, until today, a method that can overcome the human segmentation problems and adapt itself to different kinds of situations, has not been introduced. Many of methods today try to use the graph-cut framework to solve the segmentation problem. Although powerful, these methods rely on a distance penalty term (intensity difference or RGB color distance). This term does not always lead to a good separation between two regions. For example, if two regions are close in color, even if they belong to two different objects, they will be grouped together, which is not acceptable. Also, if one object has multiple parts with different colors, e.g. humans wear various clothes with different colors and patterns, each part will be segmented separately. Although this can be overcome by multiple inputs from user, the inherent problem would not be solved. In this paper, we have considered solving the problem by making use of a human probability map, super-pixels and Grab-cut framework. Using this map relives us from the need for matching the model to the actual body, thus helps to improve the segmentation accuracy. As a result, not only the accuracy has improved, but also it also became comparable to the state-of-the-art interactive methods.

  • A Family of Codebooks with Nearly Optimal Set Size

    Cuiling FAN  Rong LUO  Xiaoni DU  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:5
      Page(s):
    994-997

    Codebooks with good parameters are preferred in many practical applications, such as direct spread CDMA communications and compressed sensing. In this letter, an upper bound on the set size of a codebook is introduced by modifying the Levenstein bound on the maximum amplitudes of such a codebook. Based on an estimate of a class of character sums over a finite field by Katz, a family of codebooks nearly meeting the modified bound is proposed.

  • Bias Polarity Dependent Resistive Switching Behaviors in Silicon Nitride-Based Memory Cell

    Sungjun KIM  Min-Hwi KIM  Seongjae CHO  Byung-Gook PARK  

     
    BRIEF PAPER

      Vol:
    E99-C No:5
      Page(s):
    547-550

    In this work, the bias polarity dependent resistive switching behaviors in Cu/Si3N4/p+ Si RRAM memory cell have been closely studied. Different switching characteristics in both unipolar and bipolar modes after the positive forming are investigated. The bipolar switching did not need a forming process and showed better characteristics including endurance cycling, uniformity of switching parameters, and on/off resistance ratio. Also, the resistive switching characteristics by both positive and negative forming switching are compared. It has been confirmed that both unipolar and bipolar modes after the negative forming exhibits inferior resistive switching performances due to high forming voltage and current.

  • Optimization on Layout Strategy of Gate-Grounded NMOS for On-Chip ESD Protection in a 65-nm CMOS Process

    Guangyi LU  Yuan WANG  Xing ZHANG  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:5
      Page(s):
    590-596

    Layout strategies including source edge to substrate space (SESS) and inserted substrate-pick stripes of gate-grounded NMOS(ggNMOS) are optimized in this work for on-chip electrostatic discharge (ESD) protection. In order to fully investigate influences of substrate resistors on triggering and conduction behaviors of ggNMOS, various devices are designed and fabricated in a 65-nm CMOS process. Direct current (DC), transmission-line-pulsing (TLP), human body model (HBM) and very-fast TLP (VF-TLP) tests are executed to fully characterize performance of fabricated ggNMOS. Test results reveal that an enlarged SESS parameter results in an earlier triggering behavior of ggNMOS, which presents a layout option for subtle adjustable triggering behaviors. Besides, inserted substrate-pick stripes are proved to have a bell-shape influence on the ESD robustness of ggNMOS and this bell-shape influence is valid in TLP, HBM and VF-TLP tests. Moreover, the most ESD-robust ggNMOS optimized under different inserted substrate-pick stripes always achieves a higher HBM level over the traditional ggNMOS at each concerned total device-width. Physical mechanisms of test results will be deeply discussed in this work.

  • Hierarchical-IMM Based Maneuvering Target Tracking in LOS/NLOS Hybrid Environments

    Yan ZHOU  Lan HU  Dongli WANG  

     
    PAPER-Systems and Control

      Vol:
    E99-A No:5
      Page(s):
    900-907

    Maneuvering target tracking under mixed line-of-sight/non-line-of-sight (LOS/NLOS) conditions has received considerable interest in the last decades. In this paper, a hierarchical interacting multiple model (HIMM) method is proposed for estimating target position under mixed LOS/NLOS conditions. The proposed HIMM is composed of two layers with Markov switching model. The purpose of the upper layer, which is composed of two interacting multiple model (IMM) filters in parallel, is to handle the switching between the LOS and the NLOS environments. To estimate the target kinetic variables (position, speed and acceleration), the unscented Kalman filter (UKF) with the current statistical (CS) model is used in the lower-layer. Simulation results demonstrate the effectiveness and superiority of the proposed method, which obtains better tracking accuracy than the traditional IMM.

  • Type-II InGaAsSb-Base Double Heterojunction Bipolar Transistors Simultaneously Exhibiting over 600-GHz fmax and 5-V Breakdown Voltage

    Norihide KASHIO  Takuya HOSHI  Kenji KURISHIMA  Minoru IDA  Hideaki MATSUZAKI  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    522-527

    This paper investigates current-gain and high-frequency characteristics of double heterojunction bipolar transistors (DHBTs) with a uniform GaAsSb, compositionally graded GaAsSb, uniform InGaAsSb, or compositionally graded InGaAsSb base. DHBTs with a compositionally graded InGaAsSb base exhibit a high current gain of ∼75 and fT=504GHz. In order to boost fmax of DHBTs with a compositionally graded InGaAsSb base, a highly doped GaAsSb base contact layer is inserted. The fabricated DHBTs exhibit fT/fmax=513/637GHz and a breakdown voltage of 5.2V.

  • A Partitioning Parallelization with Hybrid Migration of MOEA/D for Bi-Objective Optimization on Message-Passing Clusters

    Yu WU  Yuehong XIE  Weiqin YING  Xing XU  Zixing LIU  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E99-A No:4
      Page(s):
    843-848

    A partitioning parallelization of the multi-objective evolutionary algorithm based on decomposition, pMOEA/D, is proposed in this letter to achieve significant time reductions for expensive bi-objective optimization problems (BOPs) on message-passing clusters. Each sub-population of pMOEA/D resides on a separate processor in a cluster and consists of a non-overlapping partition and some extra overlapping individuals for updating neighbors. Additionally, sub-populations cooperate across separate processors by the hybrid migration of elitist individuals and utopian points. Experimental results on two benchmark BOPs and the wireless sensor network layout problem indicate that pMOEA/D achieves satisfactory performance in terms of speedup and quality of solutions on message-passing clusters.

  • A Healthcare Information System for Secure Delivery and Remote Management of Medical Records

    Hyoung-Kee CHOI  Ki-Eun SHIN  Hyoungshick KIM  

     
    PAPER-Privacy protection in information systems

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    883-890

    With the rapid merger of healthcare business and information technology, more healthcare institutions and medical practices are sharing information. Since these records often contain patients' sensitive personal information, Healthcare Information Systems (HISs) should be properly designed to manage these records in a secure manner. We propose a novel security design for the HIS complying with the security and privacy rules. The proposed system defines protocols to ensure secure delivery of medical records over insecure public networks and reliable management of medical record in the remote server without incurring excessive costs to implement services for security. We demonstrate the practicality of the proposed system through a security analysis and performance evaluation.

  • Application of Feature Engineering for Phishing Detection

    Wei ZHANG  Huan REN  Qingshan JIANG  

     
    PAPER

      Pubricized:
    2016/01/28
      Vol:
    E99-D No:4
      Page(s):
    1062-1070

    Phishing attacks target financial returns by luring Internet users to exposure their sensitive information. Phishing originates from e-mail fraud, and recently it is also spread by social networks and short message service (SMS), which makes phishing become more widespread. Phishing attacks have drawn great attention due to their high volume and causing heavy losses, and many methods have been developed to fight against them. However, most of researches suffered low detection accuracy or high false positive (FP) rate, and phishing attacks are facing the Internet users continuously. In this paper, we are concerned about feature engineering for improving the classification performance on phishing web pages detection. We propose a novel anti-phishing framework that employs feature engineering including feature selection and feature extraction. First, we perform feature selection based on genetic algorithm (GA) to divide features into critical features and non-critical features. Then, the non-critical features are projected to a new feature by implementing feature extraction based on a two-stage projection pursuit (PP) algorithm. Finally, we take the critical features and the new feature as input data to construct the detection model. Our anti-phishing framework does not simply eliminate the non-critical features, but considers utilizing their projection in the process of classification, which is different from literatures. Experimental results show that the proposed framework is effective in detecting phishing web pages.

  • Multirate Coprime Sampling of Sparse Multiband Signals

    Weijun ZENG  Huali WANG  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:4
      Page(s):
    839-842

    In this letter, a new scheme for multirate coprime sampling and reconstructing of sparse multiband signals with very high carrier frequencies is proposed, where the locations of the signal bands are not known a priori. Simulation results show that the new scheme can simultaneously reduce both the number of sampling channels and the sampling rate for perfect reconstruction, compared to the existing schemes requiring high number of sampling channels or high sampling rate.

  • Max-Min-Degree Neural Network for Centralized-Decentralized Collaborative Computing

    Yiqiang SHENG  Jinlin WANG  Chaopeng LI  Weining QI  

     
    PAPER

      Vol:
    E99-B No:4
      Page(s):
    841-848

    In this paper, we propose an undirected model of learning systems, named max-min-degree neural network, to realize centralized-decentralized collaborative computing. The basic idea of the proposal is a max-min-degree constraint which extends a k-degree constraint to improve the communication cost, where k is a user-defined degree of neurons. The max-min-degree constraint is defined such that the degree of each neuron lies between kmin and kmax. Accordingly, the Boltzmann machine is a special case of the proposal with kmin=kmax=n, where n is the full-connected degree of neurons. Evaluations show that the proposal is much better than a state-of-the-art model of deep learning systems with respect to the communication cost. The cost of the above improvement is slower convergent speed with respect to data size, but it does not matter in the case of big data processing.

  • Autonomous Decentralized Authorization and Authentication Management for Hierarchical Multi-Tenancy Open Access

    Qiong ZUO  Meiyi XIE  Wei-Tek TSAI  

     
    INVITED PAPER

      Vol:
    E99-B No:4
      Page(s):
    786-793

    Hierarchical multi-tenancy, which enables tenants to be divided into subtenants, is a flexible and scalable architecture for representing subsets of users and application resources in the real world. However, the resource isolation and sharing relations for tenants with hierarchies are more complicated than those between tenants in the flat Multi-Tenancy Architecture. In this paper, a hierarchical tenant-based access control model based on Administrative Role-Based Access Control in Software-as-a-Service is proposed. Autonomous Areas and AA-tree are used to describe the autonomy and hierarchy of tenants, including their isolation and sharing relationships. AA is also used as an autonomous unit to create and deploy the access permissions for tenants. Autonomous decentralized authorization and authentication schemes for hierarchical multi-tenancy are given out to help different level tenants to customize efficient authority and authorization in large-scale SaaS systems.

  • Autonomous Decentralized Service Oriented Architecture Concept and Application for Mission Critical Information Systems

    Carlos PEREZ-LEGUIZAMO  P. Josue HERNANDEZ-TORRES  J.S. Guadalupe GODINEZ-BORJA  Victor TAPIA-TEC  

     
    PAPER

      Vol:
    E99-B No:4
      Page(s):
    803-811

    Recently, the Services Oriented Architectures (SOA) have been recognized as the key to the integration and interoperability of different applications and systems that coexist in an organization. However, even though the use of SOA has increased, some applications are unable to use it. That is the case of mission critical information applications, whose requirements such as high reliability, non-stop operation, high flexibility and high performance are not satisfied by conventional SOA infrastructures. In this article we present a novel approach of combining SOA with Autonomous Decentralized Systems (ADS) in order to provide an infrastructure that can satisfy those requirements. We have named this infrastructure Autonomous Decentralized Service Oriented Architecture (ADSOA). We present the concept and architecture of ADSOA, as well as the Loosely Couple Delivery Transaction and Synchronization Technology for assuring the data consistency and high reliability of the application. Moreover, a real implementation and evaluation of the proposal in a mission critical information system, the Uniqueness Verifying Public Key Infrastructure (UV-PKI), is shown in order to prove its effectiveness.

  • Named Entity Oriented Difference Analysis of News Articles and Its Application

    Keisuke KIRITOSHI  Qiang MA  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    906-917

    To support the efficient gathering of diverse information about a news event, we focus on descriptions of named entities (persons, organizations, locations) in news articles. We extend the stakeholder mining proposed by Ogawa et al. and extract descriptions of named entities in articles. We propose three measures (difference in opinion, difference in details, and difference in factor coverage) to rank news articles on the basis of analyzing differences in descriptions of named entities. On the basis of these three measurements, we develop a news app on mobile devices to help users to acquire diverse reports for improving their understanding of the news. For the current article a user is reading, the proposed news app will rank and provide its related articles from different perspectives by the three ranking measurements. One of the notable features of our system is to consider the access history to provide the related news articles. In other words, we propose a context-aware re-ranking method for enhancing the diversity of news reports presented to users. We evaluate our three measurements and the re-ranking method with a crowdsourcing experiment and a user study, respectively.

  • Discriminative Metric Learning on Extended Grassmann Manifold for Classification of Brain Signals

    Yoshikazu WASHIZAWA  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E99-A No:4
      Page(s):
    880-883

    Electroencephalography (EEG) and magnetoencephalography (MEG) measure the brain signal from spatially-distributed electrodes. In order to detect event-related synchronization and desynchronization (ERS/ERD), which are utilized for brain-computer/machine interfaces (BCI/BMI), spatial filtering techniques are often used. Common spatial potential (CSP) filtering and its extensions which are the spatial filtering methods have been widely used for BCIs. CSP transforms brain signals that have a spatial and temporal index into vectors via a covariance representation. However, the variance-covariance structure is essentially different from the vector space, and not all the information can be transformed into an element of the vector structure. Grassmannian embedding methods, therefore, have been proposed to utilize the variance-covariance structure of variational patterns. In this paper, we propose a metric learning method to classify the brain signal utilizing the covariance structure. We embed the brain signal in the extended Grassmann manifold, and classify it on the manifold using the proposed metric. Due to this embedding, the pattern structure is fully utilized for the classification. We conducted an experiment using an open benchmark dataset and found that the proposed method exhibited a better performance than CSP and its extensions.

  • A Construction of Optimal 16-QAM+ Sequence Sets with Zero Correlation Zone

    Yubo LI  Kai LIU  Chengqian XU  

     
    PAPER-Information Theory

      Vol:
    E99-A No:4
      Page(s):
    819-825

    In this correspondence, a method of constructing optimal zero correlation zone (ZCZ) sequence sets over the 16-QAM+ constellation is presented. Based on 16-QAM orthogonal matrices and perfect ternary sequences, 16-QAM+ ZCZ sequence sets are obtained. The resulting ZCZ sequence sets are optimal with respect to the Tang-Fan-Matsufuji bound. Moreover, methods for transforming binary or quaternary orthogonal matrices into 16-QAM orthogonal matrices are proposed. The proposed 16-QAM+ ZCZ sequence sets can be potentially applied to communication systems using a 16-QAM constellation to remove the multiple access interference (MAI) and multi-path interference (MPI).

  • Experimental Study on Battery-Less Sensor Network Activated by Multi-Point Wireless Energy Transmission

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:4
      Page(s):
    905-916

    This paper empirically validates battery-less sensor activation via wireless energy transmission to release sensors from wires and batteries. To seamlessly extend the coverage and activate sensor nodes distributed in any indoor environment, we proposed multi-point wireless energy transmission with carrier shift diversity. In this scheme, multiple transmitters are employed to compensate path-loss attenuation and orthogonal frequencies are allocated to the multiple transmitters to avoid the destructive interference that occurs when the same frequency is used by all transmitters. In our previous works, the effectiveness of the proposed scheme was validated theoretically and also empirically by using just a spectrum analyzer to measure the received power. In this paper, we develop low-energy battery-less sensor nodes whose consumed power and required received power for activation are respectively 142µW and 400µW. In addition, we conduct indoor experiments in which the received power and activation of battery-less sensor node are simultaneously observed by using the developed battery-less sensor node and a spectrum analyzer. The results show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are, respectively, 84.4% and 83.7%, while the coverage of the proposed scheme is 100%. It can be concluded that the effectiveness of the proposed scheme can be verified by our experiments using real battery-less sensor nodes.

  • Placement of Virtual Storages for Distributed Robust Cloud Storage

    Yuya TARUTANI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Network Management/Operation

      Vol:
    E99-B No:4
      Page(s):
    885-893

    Cloud storage has become popular and is being used to hold important data. As a result, availability to become important; cloud storage providers should allow users to upload or download data even if some part of the system has failed. In this paper, we discuss distributed cloud storage that is robust against failures. In distributed cloud storage, multiple replicas of each data chunk are stored in the virtual storage at geographically different locations. Thus, even if one of the virtual storage systems becomes unavailable, users can access the data chunk from another virtual storage system. In distributed cloud storage, the placement of the virtual storage system is important; if the placement of the virtual cloud storage system means that a large number of virtual storages are possible could become unavailable from a failure, a large number of replicas of each data chunk should be prepared to maintain availability. In this paper, we propose a virtual storage placement method that assures availability with a small number of replicas. We evaluated our method by comparing it with three other methods. The evaluation shows that our method can maintain availability while requiring only with 60% of the network costs required by the compared methods.

  • Performance Analysis of Lunar Spacecraft Navigation Based on Inter-Satellite Link Annular Beam Antenna

    Lei CHEN  Ke ZHANG  Yangbo HUANG  Zhe LIU  Gang OU  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2016/01/29
      Vol:
    E99-B No:4
      Page(s):
    951-959

    The rapid development of a global navigation satellite system (GNSS) has raised the demand for spacecraft navigation, particularly for lunar spacecraft (LS). First, instead of the traditional approach of combining the united X-band system (UXB) with very-long-baseline interferometry (VLBI) by a terrestrial-based observing station in Chinese deep-space exploration, the spacecraft navigation based on inter-satellite link (ISL) is proposed because the spatial coverage of the GNSS downstream signals is too narrow to be used for LS navigation. Second, the feasibility of LS navigation by using ISL wide beam signals has been analyzed with the following receiving parameters: the geometrical dilution of precision (GDOP) and the carrier-to-noise ratio (C/N0) for satellites autonomously navigation of ISL and LS respectively; the weighting distance root-mean-square (wdrms) for the combination of both navigation modes. Third, to be different from all existing spacecraft ISL and GNSS navigation methods, an ISL annular beam transmitting antenna has been simulated to minimize the wdrms (1.138m) to obtain the optimal beam coverage: 16°-47° on elevation angle. Theoretical calculations and simulations have demonstrated that both ISL autonomous navigation and LS navigation can be satisfied at the same time. Furthermore, an onboard annular wide beam ISL antenna with optimized parameters has been designed to provide a larger channel capacity with a simpler structure than that of the existing GPS ISL spot beam antenna, a better anti-jamming performance than that of the former GPS ISL UHF-band wide band antenna, and a wider effectively operating area than the traditional terrestrial-based measurement. Lastly, the possibility and availability of applying an ISL receiver with an annular wide beam antenna on the Chinese Chang'E-5T (CE-5T) reentry experiment for autonomous navigation are analyzed and verified by simulating and comparing the ISL receiver with the practiced GNSS receiver.

  • Privacy Protection for Social Video via Background Estimation and CRF-Based Videographer's Intention Modeling

    Yuta NAKASHIMA  Noboru BABAGUCHI  Jianping FAN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    1221-1233

    The recent popularization of social network services (SNSs), such as YouTube, Dailymotion, and Facebook, enables people to easily publish their personal videos taken with mobile cameras. However, at the same time, such popularity has raised a new problem: video privacy. In such social videos, the privacy of people, i.e., their appearances, must be protected, but naively obscuring all people might spoil the video content. To address this problem, we focus on videographers' capture intentions. In a social video, some persons are usually essential for the video content. They are intentionally captured by the videographers, called intentionally captured persons (ICPs), and the others are accidentally framed-in (non-ICPs). Videos containing the appearances of the non-ICPs might violate their privacy. In this paper, we developed a system called BEPS, which adopts a novel conditional random field (CRF)-based method for ICP detection, as well as a novel approach to obscure non-ICPs and preserve ICPs using background estimation. BEPS reduces the burden of manually obscuring the appearances of the non-ICPs before uploading the video to SNSs. Compared with conventional systems, the following are the main advantages of BEPS: (i) it maintains the video content, and (ii) it is immune to the failure of person detection; false positives in person detection do not violate privacy. Our experimental results successfully validated these two advantages.

4061-4080hit(21534hit)