The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

5281-5300hit(21534hit)

  • Comparison of Calculation Techniques for Q-Factor Determination of Resonant Structures Based on Influence of VNA Measurement Uncertainty

    Yuto KATO  Masahiro HORIBE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E97-C No:6
      Page(s):
    575-582

    Four calculation techniques for the Q-factor determination of resonant structures are compared on the basis of the influence of the VNA measurement uncertainty. The influence is evaluated using Monte Carlo calculations. On the basis of the deviation, the dispersion, and the effect of nearby resonances, the circle fitting method is the most appropriate technique. Although the 3dB method is the most popular technique, the Q-factors calculated by this method exhibit deviations, and the sign and amount of the deviation depend on the measurement setup. Comparisons using measurement data demonstrate that the uncertainty of the dielectric loss tangent calculated by the circle fitting method is less than a third of those calculated by the other three techniques.

  • Design of a Boost DC-DC Converter for RGB LED Driver

    Ming-Hsien SHIH  Chia-Ling WEI  

     
    PAPER-Electronic Displays

      Vol:
    E97-C No:6
      Page(s):
    619-623

    An RGB-LED driver with a pulse-skipping-modulation boost converter is proposed to fix the reference voltage for lowering down the circuit complexity. A high-voltage LDO and a bandgap reference circuit are built into the chip. The proposed converter outputs a different voltage in response to a different color of LEDs. The output voltages for driving six red, six green, and six blue LEDs in series are 13.5V, 20V, and 21.5V, respectively. The proposed LDO and bandgap reference circuit work with supply voltages from 8V to 12V. The settling time for changing colors is lower than 300µs, better than the unfixed-reference-voltage methods. The proposed circuit was fabricated by using 0.25-µm BCD 60V technology, and the chip area was 1.9 × 1.7mm2.

  • Propagation Characteristics of Honeycomb Structures Used in mm-Wave Radial Line Slot Antennas

    Tung NGUYEN  Rushanthi JAYAWARDENE  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Manuel SIERRA CASTAÑER  Osamu AMANO  Shuichi KOREEDA  Takaomi MATSUZAKI  Yukio KAMATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:6
      Page(s):
    1139-1147

    Honeycomb structures are widely used in aerospace industry because of the lightweight and durable properties they provide. Here we propose to use a honeycomb core as the wave guiding structure in Radial Line Slot Antennas (RLSAs). This paper quantifies the propagation characteristics, especially the loss due to the honeycomb. At 32GHz, by choosing the proper cell size, both good isotropy and reasonably low effective dielectric constants are realized with the honeycomb as a spacer in a radial line waveguide. To estimate the material loss factor, several methods are compared and a factor of about 0.014∼0.018dB/mm is predicted and measured. A fabricated 90cm diameter honeycomb RLSA suffers about a 3.5∼5dB loss, which coincides with the estimates using the predicted loss factor.

  • Low Complexity Cooperative Transmission Design and Optimization for Physical Layer Security of AF Relay Networks

    Chao WANG  Hui-Ming WANG  Weile ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:6
      Page(s):
    1113-1120

    This paper studies the design of cooperative beamforming (CB) and cooperative jamming (CJ) for the physical layer security of an amplify-and-forward (AF) relay network in the presence of multiple multi-antenna eavesdroppers. The secrecy rate maximization (SRM) problem of such a network is to maximize the difference of two concave functions, a problem which is non-convex and has no efficient solution. Based on the inner convex approximation (ICA) and semidefinite relaxation (SDR) techniques, we propose two novel low-complexity schemes to design CB and CJ for SRM in the AF network. In the first strategy, relay nodes adopt the CB only to secure transmission. Based on ICA, this design guarantees convergence to a Karush-Kuhn-Tucker (KKT) solution of the SDR of the original problem. In the second strategy, the optimal joint CB and CJ design is studied and the proposed joint design can guarantee convergence to a KKT solution of the original problem. Moreover, in the second strategy, we prove that SDR always has a rank-1 solution for the SRM problem. Simulation results show the superiority of the proposed schemes.

  • Diagnosis of Signaling and Power Noise Using In-Place Waveform Capturing for 3D Chip Stacking Open Access

    Satoshi TAKAYA  Hiroaki IKEDA  Makoto NAGATA  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    557-565

    A three dimensional (3D) chip stack featuring a 4096-bit wide I/O demonstrator incorporates an in-place waveform capturer on an intermediate interposer within the stack. The capturer includes probing channels on paths of signaling as well as in power delivery and collects analog waveforms for diagnosing circuits within 3D integration. The collection of in-place waveforms on vertical channels with through silicon vias (TSVs) are demonstrated among 128 vertical I/O channels distributed in 8 banks in a 9.9mm × 9.9mm die area. The analog waveforms confirm a full 1.2-V swing of signaling at the maximum data transmission bandwidth of 100GByte/sec with sufficiently small deviations of signal skews and slews among the vertical channels. In addition, it is also experimentally confirmed that the signal swing can be reduced to 0.75V for error free data transfer at 100GByte/sec, achieving the energy efficiency of 0.21pJ/bit.

  • A Low-Cost Stimulus Design for Linearity Test in SAR ADCs

    An-Sheng CHAO  Cheng-Wu LIN  Hsin-Wen TING  Soon-Jyh CHANG  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    538-545

    The proposed stimulus design for linearity test is embedded in a differential successive approximation register analog-to-digital converter (SAR ADC), i.e. a design for testability (DFT). The proposed DFT is compatible to the pattern generator (PG) and output response analyzer (ORA) with the cost of 12.4-% area of the SAR ADC. The 10-bit SAR ADC prototype is verified in a 0.18-µm CMOS technology and the measured differential nonlinearity (DNL) error is between -0.386 and 0.281 LSB at 1-MS/s.

  • Algorithm for Finding Maximum Detour Hinge Vertices of Interval Graphs

    Hirotoshi HONMA  Yoko NAKAJIMA  Yuta IGARASHI  Shigeru MASUYAMA  

     
    LETTER

      Vol:
    E97-A No:6
      Page(s):
    1365-1369

    Consider a simple undirected graph G = (V,E) with vertex set V and edge set E. Let G-u be a subgraph induced by the vertex set V-{u}. The distance δG(x,y) is defined as the length of the shortest path between vertices x and y in G. The vertex u ∈ V is a hinge vertex if there exist two vertices x,y ∈ V-{u} such that δG-u(x,y)>δG(x,y). Let U be a set consisting of all hinge vertices of G. The neighborhood of u is the set of all vertices adjacent to u and is denoted by N(u). We define d(u) = max{δG-u(x,y) | δG-u(x,y)>δG(x,y),x,y ∈ N(u)} for u ∈ U as detour degree of u. A maximum detour hinge vertex problem is to find a hinge vertex u with maximum d(u) in G. In this paper, we proposed an algorithm to find the maximum detour hinge vertex on an interval graph that runs in O(n2) time, where n is the number of vertices in the graph.

  • Integration of Spectral Feature Extraction and Modeling for HMM-Based Speech Synthesis

    Kazuhiro NAKAMURA  Kei HASHIMOTO  Yoshihiko NANKAKU  Keiichi TOKUDA  

     
    PAPER-HMM-based Speech Synthesis

      Vol:
    E97-D No:6
      Page(s):
    1438-1448

    This paper proposes a novel approach for integrating spectral feature extraction and acoustic modeling in hidden Markov model (HMM) based speech synthesis. The statistical modeling process of speech waveforms is typically divided into two component modules: the frame-by-frame feature extraction module and the acoustic modeling module. In the feature extraction module, the statistical mel-cepstral analysis technique has been used and the objective function is the likelihood of mel-cepstral coefficients for given speech waveforms. In the acoustic modeling module, the objective function is the likelihood of model parameters for given mel-cepstral coefficients. It is important to improve the performance of each component module for achieving higher quality synthesized speech. However, the final objective of speech synthesis systems is to generate natural speech waveforms from given texts, and the improvement of each component module does not always lead to the improvement of the quality of synthesized speech. Therefore, ideally all objective functions should be optimized based on an integrated criterion which well represents subjective speech quality of human perception. In this paper, we propose an approach to model speech waveforms directly and optimize the final objective function. Experimental results show that the proposed method outperformed the conventional methods in objective and subjective measures.

  • Exposure-Resilient One-Round Tripartite Key Exchange without Random Oracles

    Koutarou SUZUKI  Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1345-1355

    This paper studies Tripartite Key Exchange (3KE) which is a special case of Group Key Exchange. Though general one-round GKE satisfying advanced security properties such as forward secrecy and maximal-exposure-resilience (MEX-resilience) is not known, it can be efficiently constructed with the help of pairings in the 3KE case. In this paper, we introduce the first one-round 3KE which is MEX-resilient in the standard model, though existing one-round 3KE schemes are proved in the random oracle model (ROM), or not MEX-resilient. Each party broadcasts 4 group elements, and executes 14 pairing operations. Complexity is only three or four times larger in computation and communication than the existing most efficient MEX-resilient 3KE scheme in the ROM; thus, our protocol is adequately practical.

  • An Information Security Management Database System (ISMDS) for Engineering Environment Supporting Organizations with ISMSs

    Ahmad Iqbal Hakim SUHAIMI  Yuichi GOTO  Jingde CHENG  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:6
      Page(s):
    1516-1527

    Information Security Management Systems (ISMSs) play important roles in helping organizations to manage their information securely. However, establishing, managing, and maintaining ISMSs is not an easy task for most organizations because an ISMS has many participants and tasks, and requires many kinds of documents. Therefore, organizations with ISMSs demand tools that can support them to perform all tasks in ISMS lifecycle processes consistently and continuously. To realize such support tools, a database system that manages ISO/IEC 27000 series, which are international standards for ISMSs, and ISMS documents, which are the products of tasks in ISMS lifecycle processes, is indispensable. The database system should manage data of the standards and documents for all available versions and translations, relationship among the standards and documents, authorization to access the standards and documents, and metadata of the standards and documents. No such database system has existed until now. This paper presents an information security management database system (ISMDS) that manages ISO/IEC 27000 series and ISMS documents. ISMDS is a meta-database system that manages several databases of standards and documents. ISMDS is used by participants in ISMS as well as tools supporting the participants to perform tasks in ISMS lifecycle processes. The users or tools can retrieve data from all versions and translations of the standards and documents. The paper also presents some use cases to show the effectiveness of ISMDS.

  • Extended Algorithm for Solving Underdefined Multivariate Quadratic Equations

    Hiroyuki MIURA  Yasufumi HASHIMOTO  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:6
      Page(s):
    1418-1425

    It is well known that solving randomly chosen Multivariate Quadratic equations over a finite field (MQ-Problem) is NP-hard, and the security of Multivariate Public Key Cryptosystems (MPKCs) is based on the MQ-Problem. However, this problem can be solved efficiently when the number of unknowns n is sufficiently greater than that of equations m (This is called “Underdefined”). Indeed, the algorithm by Kipnis et al. (Eurocrypt'99) can solve the MQ-Problem over a finite field of even characteristic in a polynomial-time of n when n ≥ m(m+1). Therefore, it is important to estimate the hardness of the MQ-Problem to evaluate the security of Multivariate Public Key Cryptosystems. We propose an algorithm in this paper that can solve the MQ-Problem in a polynomial-time of n when n ≥ m(m+3)/2, which has a wider applicable range than that by Kipnis et al. We will also compare our proposed algorithm with other known algorithms. Moreover, we implemented this algorithm with Magma and solved the MQ-Problem of m=28 and n=504, and it takes 78.7 seconds on a common PC.

  • On the Average Hamming Correlation of Frequency Hopping Sequences

    Hongyu HAN  Daiyuan PENG  Xing LIU  

     
    LETTER-Coding Theory

      Vol:
    E97-A No:6
      Page(s):
    1430-1433

    For frequency hopping spread spectrum communication systems, the average Hamming correlation (AHC) among frequency hopping sequences (FHSs) is an important performance indicator. In this letter, a sufficient and necessary condition for a set of FHSs with optimal AHC is given. Based on interleaved technique, a new construction for optimal AHC FHS sets is also proposed, which generalizes the construction of Chung and Yang. Several optimal AHC FHS sets with more flexible parameters not covered in the literature are obtained by the new construction, which are summarized in Table 1.

  • A Virtualization-Based Approach for Application Whitelisting

    Donghai TIAN  Jingfeng XUE  Changzhen HU  Xuanya LI  

     
    LETTER-Software System

      Vol:
    E97-D No:6
      Page(s):
    1648-1651

    A whitelisting approach is a promising solution to prevent unwanted processes (e.g., malware) getting executed. However, previous solutions suffer from limitations in that: 1) Most methods place the whitelist information in the kernel space, which could be tempered by attackers; 2) Most methods cannot prevent the execution of kernel processes. In this paper, we present VAW, a novel application whitelisting system by using the virtualization technology. Our system is able to block the execution of unauthorized user and kernel processes. Compared with the previous solutions, our approach can achieve stronger security guarantees. The experiments show that VAW can deny the execution of unwanted processes effectively with a little performance overhead.

  • A Novel Adaptive Unambiguous Acquisition Scheme for CBOC Signal Based on Galileo

    Ce LIANG  Xiyan SUN  Yuanfa JI  Qinghua LIU  Guisheng LIAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:6
      Page(s):
    1157-1165

    The composite binary offset carrier (CBOC) modulated signal contains multi-peaks in its auto-correlation function, which brings ambiguity to the signal acquisition process of a GNSS receiver. Currently, most traditional ambiguity-removing schemes for CBOC signal acquisition approximate CBOC signal as a BOC signal, which may incur performance degradation. Based on Galileo E1 CBOC signal, this paper proposes a novel adaptive ambiguity-removing acquisition scheme which doesn't adopt the approximation used in traditional schemes. According to the energy ratio of each sub-code of CBOC signal, the proposed scheme can self-adjust its local reference code to achieve unambiguous and precise signal synchronization. Monte Carlo simulation is conducted in this paper to analyze the performance of the proposed scheme and three traditional schemes. Simulation results show that the proposed scheme has higher detection probability and less mean acquisition time than the other three schemes, which verify the superiority of the proposed scheme.

  • Voice Conversion Based on Speaker-Dependent Restricted Boltzmann Machines

    Toru NAKASHIKA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER-Voice Conversion and Speech Enhancement

      Vol:
    E97-D No:6
      Page(s):
    1403-1410

    This paper presents a voice conversion technique using speaker-dependent Restricted Boltzmann Machines (RBM) to build high-order eigen spaces of source/target speakers, where it is easier to convert the source speech to the target speech than in the traditional cepstrum space. We build a deep conversion architecture that concatenates the two speaker-dependent RBMs with neural networks, expecting that they automatically discover abstractions to express the original input features. Under this concept, if we train the RBMs using only the speech of an individual speaker that includes various phonemes while keeping the speaker individuality unchanged, it can be considered that there are fewer phonemes and relatively more speaker individuality in the output features of the hidden layer than original acoustic features. Training the RBMs for a source speaker and a target speaker, we can then connect and convert the speaker individuality abstractions using Neural Networks (NN). The converted abstraction of the source speaker is then back-propagated into the acoustic space (e.g., MFCC) using the RBM of the target speaker. We conducted speaker-voice conversion experiments and confirmed the efficacy of our method with respect to subjective and objective criteria, comparing it with the conventional Gaussian Mixture Model-based method and an ordinary NN.

  • Theoretical Comparison of Root Computations in Finite Fields

    Ryuichi HARASAWA  Yutaka SUEYOSHI  Aichi KUDO  

     
    LETTER

      Vol:
    E97-A No:6
      Page(s):
    1378-1381

    In the paper [4], the authors generalized the Cipolla-Lehmer method [2][5] for computing square roots in finite fields to the case of r-th roots with r prime, and compared it with the Adleman-Manders-Miller method [1] from the experimental point of view. In this paper, we compare these two methods from the theoretical point of view.

  • On the Greatest Number of Paths and Maximal Paths for a Class of Directed Acyclic Graphs

    Shinsuke ODAGIRI  Hiroyuki GOTO  

     
    LETTER

      Vol:
    E97-A No:6
      Page(s):
    1370-1374

    For a fixed number of nodes, we focus on directed acyclic graphs in which there is not a shortcut. We find the case where the number of paths is maximized and its corresponding count of maximal paths. Considering this case is essential in solving large-scale scheduling problems using a PERT chart.

  • Queue Layouts of Toroidal Grids

    Kung-Jui PAI  Jou-Ming CHANG  Yue-Li WANG  Ro-Yu WU  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1180-1186

    A queue layout of a graph G consists of a linear order of its vertices, and a partition of its edges into queues, such that no two edges in the same queue are nested. The queuenumber qn(G) is the minimum number of queues required in a queue layout of G. The Cartesian product of two graphs G1 = (V1,E1) and G2 = (V2,E2), denoted by G1 × G2, is the graph with {:v1 ∈ V1 and v2 ∈ V2} as its vertex set and an edge (,) belongs to G1×G2 if and only if either (u1,v1) ∈ E1 and u2 = v2 or (u2,v2) ∈ E2 and u1 = v1. Let Tk1,k2,...,kn denote the n-dimensional toroidal grid defined by the Cartesian product of n cycles with varied lengths, i.e., Tk1,k2,...,kn = Ck1 × Ck2 × … × Ckn, where Cki is a cycle of length ki ≥ 3. If k1 = k2 = … = kn = k, the graph is also called the k-ary n-cube and is denoted by Qnk. In this paper, we deal with queue layouts of toroidal grids and show the following bound: qn(Tk1,k2,...,kn) ≤ 2n-2 if n ≥ 2 and ki ≥ 3 for all i = 1,2,...,n. In particular, for n = 2 and k1,k2 ≥ 3, we acquire qn(Tk1,k2) = 2. Recently, Pai et al. (Inform. Process. Lett. 110 (2009) pp.50-56) showed that qn(Qnk) ≤ 2n-1 if n ≥1 and k ≥9. Thus, our result improves the bound of qn(Qnk) when n ≥2 and k ≥9.

  • Longest Fault-Free Cycles in Folded Hypercubes with Conditional Faulty Elements

    Wen-Yin HUANG  Jia-Jie LIU  Jou-Ming CHANG  Ro-Yu WU  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1187-1191

    An n-dimensional folded hypercube, denoted by FQn, is an enhanced n-dimensional hypercube with one extra link between nodes that have the furthest Hamming distance. Let FFv (respectively, FFe) denote the set of faulty nodes (respectively, faulty links) in FQn. Under the assumption that every fault-free node in FQn is incident to at least two fault-free links, Hsieh et al. (Inform. Process. Lett. 110 (2009) pp.41-53) showed that if |FFv|+|FFe| ≤ 2n-4 for n ≥ 3, then FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv|. In this paper, we show that, under the same conditional fault model, FQn with n ≥ 5 can tolerate more faulty elements and provides the same lower bound of the length of a longest fault-free cycle, i.e., FQn-FFv-FFe contains a fault-free cycle of length at least 2n-2|FFv| if |FFv|+|FFe| ≤ 2n-3 for n ≥ 5.

  • Introduction of Yield Quadrant and Yield Capability Index for VLSI Manufacturing

    Junichi HIRASE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E97-C No:6
      Page(s):
    609-618

    Yield enhancements and quality improvements must be considered as factors of the utmost importance in VLSI (Very Large Scale Integration circuits) manufacturing in order to reduce cost and ensure customer satisfaction. This paper will present a study of the yield theory, an analysis of actual manufacturing data, and the challenges of yield enhancement.

5281-5300hit(21534hit)